期刊文献+

Ti65合金的初级蠕变和稳态蠕变 被引量:7

Primary Creep and Steady-State Creep of Ti65 Alloy
原文传递
导出
摘要 使用透射电镜(TEM)研究了Ti65合金在600~650℃、120~160 MPa条件下的蠕变变形行为及其微观变形机制。结果表明:初级蠕变变形机制主要由受攀移控制的位错越过α2相的过程主导;稳态蠕变阶段蠕变机制主要由受界面处扩散控制的位错攀移的过程主导,且应力指数为5~7。在初级蠕变阶段α2相与位错的相互作用是α2相对合金高温强化的主要方式,在稳态蠕变阶段沿α/β相界分布的硅化物阻碍位错运动与限制晶界滑移是硅化物对合金强化的主要方式。 The creep deformation behavior and relevant microscopic deformation mechanisms of Ti65 alloy were investigated via tensile creep test by stresses in the range of 120~160 MPa at 600~650℃and TEM observation.The results show that the primary creep deformation mechanism is dominated by the process of climbing-controlled dislocations crossing theα2 phases and the creep mechanism in the steady-state creep stage is dominated by the process of diffusion-controlled dislocation climbing at theα/βinterfaces,and the stress index of steady-state creep stage varies from 5 to 7.The hindering of dislocation motions byα2 phases is the dominating process to strengthen the high-temperature creep resistance of Ti65 alloy during the primary creep stage.The silicide precipitates distributed alongα/βphase boundaries,impede the dislocation motions and restrict the grain boundary slip(GBS),which is the dominating strengthening mechanism during the steady-state creep stage.
作者 岳颗 刘建荣 杨锐 王清江 YUE Ke;LIU Jianrong;YANG Rui;WANG Qingjiang(Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China;School of Materials Science and Engineering,University of Science and Technology of China,Shenyang 110016,China)
出处 《材料研究学报》 EI CAS CSCD 北大核心 2020年第2期151-160,共10页 Chinese Journal of Materials Research
关键词 材料科学基础学科 蠕变机制 蠕变试验 Ti65合金 microstructure and properties of materials creep deformation creep test Ti65 alloy
作者简介 岳颗,男,1990年生,博士生;通讯作者:刘建荣,研究员,jrliu@imr.ac.cn,研究方向为高温钛合金
  • 相关文献

参考文献2

二级参考文献42

  • 1洪权,张振祺,杨冠军,罗国珍.Ti600合金的热机械加工工艺与组织性能[J].金属学报,2002,38(z1):135-137. 被引量:26
  • 2张尚洲,徐惠忠,刘子全,刘羽寅,杨锐.碳含量对Ti-60合金时效过程中硅化物的影响[J].材料研究学报,2005,19(5):499-505. 被引量:14
  • 3W.Cho, J.W.Jones, J.E.Allison, W.T.Donlon, in: Sixth World Conference on Titanium, Vol. 1, edited by P.Lacombe, R.Tricot and G. Beranger (Les Editions de Physique, Paris, 1988) p.187
  • 4B.Borcheat, M.A.Daeubler, in: Sixth World Conference on Titanium, edited by P.Lacombe, R.Tricot and G. Beranger (Les Editions de Physique, Paris, 1988)p.467
  • 5S.Hardt, H.J.Maier, H. J.Christ, High-temperature fatigue damage mechanisms in near-α titanium alloy IMI 834, Int. J. Fatigue, 21, 779(1999)
  • 6T.K.G.Namboodhiri, Jr, C.J.McMahon, H.Herman, Decomposition of the α-phase in titanium-rich Ti-Al alloys, Metall. Trans., 4, 1323(1973)
  • 7Thomas H.Courtney著.材料力学行为(北京,机械工业出版社,2004)p.293
  • 8C.Ramachandra, V.K.Verma, V.Singh, Low cycle fatigue behaviour of titanium alloy 685, Int. J. Fatigue, 10, 21(1988)
  • 9C.Ramachandra, V.Singh, Effect of silicide precipitation on the low cycle fatigue behaviour of alloy Ti-6Al 5Zr 0.5Mo-0.25Si, Scr. Metall., 21, 633(1987)
  • 10W.J.Plumbridge, M.Stanley, Low cycle fatigue of a titanium 829 alloy, Int. J. Fatigue, 8, 206(1986)

共引文献47

同被引文献63

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部