期刊文献+

捕获定位与释放机构的性能测试

Test of the Performance in Grabbing Positioning and Release Mechanism
在线阅读 下载PDF
导出
摘要 对空间惯性传感器的捕获定位与释放机构进行了性能测试。结果表明:在输入电压从0升到150 V,然后降至0的过程中,压电叠堆驱动器的极限位移为21.03μm;在释放顶针与测试质量块的间距(即预留间隙)为0.02 mm、输入电压为97 V时,预载力达0.30 N;当预留间隙为0.03 mm时,需在125 V的输入电压下预载力才能达到0.30 N;在预载力为0.30 N的条件下,预留间隙不宜大于0.03 mm;俯仰角度和偏航角度能共同影响预载力,且前者的影响大于后者;在测试范围内,受释放顶针偏转程度影响的预载力最大偏差约达到了43%;压电叠堆驱动器蠕变特性对捕获定位与释放机构性能的影响不明显。 The performance of grabbing,positioning and release mechanism(GPRM)of the space inertial sensor is tested.The results show that the ultimate displacement of the piezoelectric stack driver is 21.03μm when the input voltage rises from 0to 150Vand then drops to 0.When the distance between the release thimble and the test mass block(that is,the reserved distance)is 0.02mm and the input voltage is 97V,the preload force reaches 0.30N;When the reserved spacing is 0.03mm,the preload can reach 0.30Nonly under 125Vinput voltage.When the preload is 0.30N,the reserved spacing should not be greater than 0.03mm.The pitch Angle and yaw Angle can influence the preload together,and the former has greater influence than the latter.In the test range,the maximum deviation of preload affected by the deflection degree of the thimble is about 43%.The creep characteristic of piezoelectric stack driver has no obvious influence on the performance of GPRM.
作者 徐志晨 纪玉杰 刘博林 XU Zhichen;JI Yujie;LIU Bolin(School of Mechanical Engineering,Shenyang Ligong University,Shenyang 110159,China)
出处 《成组技术与生产现代化》 2023年第3期44-49,共6页 Group Technology & Production Modernization
关键词 空间惯性传感器 捕获定位与释放机构 压电叠堆驱动器 精密驱动 预载力 spatial inertial sensor grabbing,positioning and release mechanism piezoelectric stack driver precision driving preload force
作者简介 徐志晨(1993—),男,河北衡水人,硕士研究生,研究方向为空间惯性传感器的设计。
  • 相关文献

参考文献6

二级参考文献46

  • 1赵宏伟,刘建芳,华顺明,刘国嵩,程光明,吴博达.压电型步进精密旋转驱动器[J].光学精密工程,2005,13(3):305-310. 被引量:13
  • 2赵宏伟,吴博达,杨志刚,程光明.尺蠖型压电直线驱动器的运动稳定性分析[J].纳米技术与精密工程,2007,5(1):49-54. 被引量:2
  • 3GOLDFARB M,CELANOVIC N. Modeling piezoe- lectric stack actuators for control of micromanipula- tion[J]. IEEE Control system, 1997,17(3) .. 69-79.
  • 4COLEMAN B D, HODGDON M L. A constitutive relation for rate independent hysteresis in ferromag netieally soft materials[J]. Int. J. of Engineering Science, 1986,24(6) :897-919.
  • 5SONGG,ZHAOJ Q,ZHOU X Q,etal.. Tracking control of a piezoceramie actuator with hysteresis compensation using inverse Preisach model [J].IEEE/ASME Transactions on Mechatronics , 2005, 10(2) : 198-209.
  • 6TAN U X,WIN T L,ANG W T. Modeling piezoe- lectric actuator hysteresis with singularity free Prandtl-Ishlinskii model [C]. IEEE International Conference on Robotics and Biomimetics , December.17 -20,2006, Kunming, China. 2006 : 251- 256.
  • 7KUHNEN K,JANOCHA H. Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems[J].Control Intell. Syst. , 2001,29(3) : 74-83.
  • 8KUHNEN K, JANOCHA H. Compensation of creep and hysteresis effects of piezoelectric actua- tors with inverse systems[C]. Proceedings of Actuator 98 6th International Conference on New Actuators Germany : 1998.
  • 9KUHNEN K. Modeling identification and compen- sation of complex hysteresis nonlinearities a modi- fied Prandtl-Ishlinskii approach [J]. Euro Pen Journal of Control ,2003,9(4) :407-418.
  • 10李利亮, 董丰, 王海燕. 2011. Drag-Free 技术在卫星工程中的应用. 飞行控制与光电探测, 4: 39-43.

共引文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部