期刊文献+

基于词嵌入和自注意力机制的方面提取算法 被引量:1

Aspect extraction algorithm based on word embedding and self-attention mechanism
在线阅读 下载PDF
导出
摘要 方面提取是情感分析中的关键步骤,随着互联网的快速发展,短文本数据迅猛增加,对短文本数据加以整理和利用极为重要。本文针对短文本的特殊性,提出了短文本模型WESM。与现有模型不同的是,本文引入了词汇共现网络,丰富了词汇的上下文信息,针对中文数据,引入了cw2vec模型,能够充分利用中文词语的语义信息;为了提高短文本的上下文语义缺失,引入了自注意力机制,能够丰富模型的上下文语义信息,提高方面词汇权重,在词汇聚类过程中,降低了非方面词汇的影响。相较于传统方面提取算法性能有着显著的提升。 Aspect extraction is a key step in sentiment analysis tasks.With the rapid development of the Internet,the data of short has increased rapidly,and it is important to organize and make use of those.The main work of this paper is as follows:For the particularity of short text,this paper proposes a short text model WESM.Different from the existing models,this paper introduces a vocabulary co-occurrence network to enrich the context information of the vocabulary.As for Chinese data,the cw2vec model has been introduced,which will make full use of the context semantic information;in order to improve the lack of contextual semantics of short texts,this paper introduces a self-attention mechanism,which can enrich the contextual semantic information of the model and increase the weight of the terms.In the process of clustering,the influence of non-aspect words is reduced.Compared with the traditional extraction algorithm,the performance has been significantly improved.
作者 吴杭鑫 张云华 WU Hangxin;ZHANG Yunhua(School of Information,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处 《智能计算机与应用》 2021年第4期25-29,共5页 Intelligent Computer and Applications
关键词 方面提取 词嵌入 自注意力机制 Aspect extraction Word embedding Self-attention mechanism
作者简介 吴杭鑫(1994-),男,硕士研究生,主要研究方向:智能信息处理;张云华(1965-),男,博士,教授,硕士生导师,主要研究方向:软件架构、软件工厂、智能信息处理
  • 相关文献

参考文献3

二级参考文献20

  • 1张钹.自然语言处理的计算模型[J].中文信息学报,2007,21(3):3-7. 被引量:18
  • 2姚天昉,聂青阳,李建超,李林琳,陈柯,付宁.一个用于汉语汽车评论的意见挖掘系统[C]//中文信息处理前沿进展-中国中文信息学会二十五周年学术会议论文集.北京:清华大学出版社,2006:260-281.
  • 3Jun Lang, Bing Qin, Ting Liu, Sheng Li. 2007. Intra-doeument Coreference Resolution: The state of the art[J]. Journal of Chinese Language and Computing, 17 (4):227-253.
  • 4Ponzetto, Simone Paolo and Michael Strube. 2006. Exploiting Semantic Role Labeling, WordNet and Wikipedia for Coreference Resolution. [C]//Proceedings of the Human Language Technology Conference of the NAACL, Main Conference 2006.
  • 5David L. Bean and Ellen Riloff. 2004. Unsupervised Learning of Contextual Role Knowledge for Coreference Resolution. [C]//Proceedings of HLT-NAACL 2004.
  • 6X. Luo. 2005. On coreference resolution performance metrics.[C]//Proc. of the conference on Human Language Technology and Empirical Methods in Natural Language Processing. Vancouver, British Columbia, Canada: Association for Computational Linguistics, 25-32.
  • 7Xiaofeng Yang and Jian Su. 2007. Coreference Resolution Using Semantic Relatedness Information From Automatically Discovered Patterns. [C]//Proceedings of ACL 2007.
  • 8J. McCarthy and W. Lehnert. 1995. Using decision trees for coreference resolution. In: C.R. Perrault ed. [C]//Proc. of the Fourteenth International Joint Conference on Artificial Intelligence. Ou bec, Canada: Springer, 1050-1055.
  • 9Kohavi, R., G. H. John. 1997. Wrappers for feature subset selection[J]. Artificial Intelligence Journal. 97 (1-2): 273 - 324.
  • 10Soon, W. M., H. T. Ng, D. C. Y. Lim. 2001. A machine learning approach to coreference resolution of noun phrases [J]. Computational Linguistics, 27(4) : 521 -544.

共引文献141

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部