期刊文献+

D2D通信中基于深度强化学习的资源分配 被引量:6

Resource allocation based on deep reinforcement learning in D2D communication
在线阅读 下载PDF
导出
摘要 设备到设备(D2D)通信能够以蜂窝设施为基础来提高资源利用率、用户吞吐量和节省电池能量。在D2D网络中,模式选择和资源分配是关键问题。为了提高D2D通信的和速率与频谱利用效率,提出一种联合模式选择、功率和资源块分配的方案。首先根据用户地理位置选定模式选择标准,帮助用户选择相应的通信模式;然后针对复用通信模式,使用基于深度强化学习的异步优势动作评价(A3C)算法为不同的D2D用户分配资源块和功率。仿真结果表明,本文提出的基于A3C算法的联合优化方案收敛速度快,并且性能相对于其他算法较好。 Device to device(D2D)communication can be based on cellular facilities to improve resource utilization,user throughput and save battery energy.In D2D network,mode selection and resource allocation are the key issues.In order to improve the sum rate and spectrum efficiency of D2D communication,a scheme of joint mode selection,power and resource block allocation is proposed.Firstly,the mode selection criteria are selected according to the user′s geographical location to help the user select the corresponding communication mode;Then,for the multiplexing communication mode,the asynchronous dominant action evaluation(A3C)algorithm based on deep reinforcement learning is used to allocate resource blocks and power to different D2D users.The simulation results show that the joint optimization scheme based on A3C algorithm proposed in this paper has fast convergence speed and better performance than other algorithms.
作者 沈国丽 李君 李正权 Shen Guoli;Li Jun;Li Zhengquan(Nanjing University of Information Science&Technology,Nanjing 210044,China;Wuxi University,Wuxi 214105,China;Key Laboratory of Advanced Control of Light Industry Process,Ministry of Education,Jiangnan University,Wuxi 214122,China;State Key Laboratory of Network and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《电子测量技术》 北大核心 2022年第24期76-84,共9页 Electronic Measurement Technology
基金 国家自然科学基金(61571108) 网络与交换技术国家重点实验室(北京邮电大学)开放课题资助项目(SKLNST-2020-1-13)资助
关键词 模式选择 功率分配 资源分配 D2D通信 深度强化学习 mode selection power distribution resource allocation D2D communication deep reinforcement learning
作者简介 沈国丽,硕士研究生,主要研究方向为无线通信、深度强化学习方向。E-mail:20201249231@nuist.edu.cn;通信作者:李正权,教授,主要研究方向为无线通信、信号处理、信道编码译码方向。E-mail:lzq722@jiangnan.edu.cn;李君,教授,主要研究方向为无线通信、资源分配、机器学习、编码译码等方向。E-mail:07a0303105@cjlu.edu.cn
  • 相关文献

参考文献3

二级参考文献82

  • 1高西奇,尤肖虎,江彬,潘志文.面向后三代移动通信的MIMO-GMC无线传输技术[J].电子学报,2004,32(F12):105-108. 被引量:10
  • 2METIS. Mobile and wireless communications enablers for the 2020 information society. In: EU 7th Framework Programme Project, https://www.metis2020.com.
  • 3Wen T, Zhu P Y. 5G: A technology vision. Huawei, 2013. http://www.huawei.com/en/about-huawei/publications/ winwin-magazine/hw-329304.htm.
  • 4Wang C X, Haider F, Gao X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122-130.
  • 53GPP. Physical Channels and Modulation (Release 11). 3GPP TS36.211. 2010.
  • 6Marzetta T L. How Much training is required for multiuser MIMO? In: Proceedings of the 40th Asilomar Conference on Signals, Systems, & Computers, Pacific Grove, 2006. 359-363.
  • 7Marzetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 2010, 9: 3590-3600.
  • 8Ngo H Q, Larsson E G, Marzetta T L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun, 2013, 61: 1436-1449.
  • 9You X H, Wang D M, Sheng B, et al. Cooperative distributed antenna systems for mobile communications. IEEE Wirel Commun, 2010, 17: 35-43.
  • 10You X H, Wang D M, Zhu P C, et al. Cell edge performance of cellular systems. IEEE J Sel Area Commun, 2011, 29: 1139-1150.

共引文献739

同被引文献28

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部