期刊文献+

VMD及PSO优化SVM的行星齿轮箱故障诊断 被引量:14

Fault diagnosis method of planetary gear box based on variationalmodal decomposition and particle swarmoptimization support vector machine
在线阅读 下载PDF
导出
摘要 以故障高发的行星齿轮传动系统为对象,提出基于变分模态分解(variational mode decomposition,VMD)及粒子群算法(particle swarm optimization,PSO)优化支持向量机(support vector machine,SVM)的故障诊断方法。首先,对信号进行VMD分解,采用改进小波降噪的方法处理分解后的本征模态分量(IMF),并对处理后的分量进行重构,凸显信号蕴含的信息;然后,对处理后的振动信号进行特征提取,分别提取信号的样本熵和均方根误差,并组成输入矩阵;最后,引入PSO优化SVM的关键参数,将提取的特征向量输入PSO-SVM进行训练和识别。将该方法应用于行星传动试验平台获取的行星轮裂纹故障、太阳轮轮齿故障及行星轮轴承故障信号,通过多维比较,验证了该方法的有效性。 This paper takes the planetary gear transmission system with high incidence of faults as the object,a fault diagnosis method based on variational mode decomposition(VMD)and particle swarm optimization(PSO)to optimize support vector machine(SVM)is presented.Firstly,the signal is decomposed by VMD,the decomposed components are processed by improved wavelet method,and the processed components are reconstructed to highlight the signal.The weak information of SVM is extracted.Then,the sample entropy and root mean square error of the processed vibration signal are extracted,and the input matrix is formed.Finally,PSO is introduced to optimize the key parameters of SVM,and the extracted eigenvectors are input into PSO-SVM for training and recognition.The method is applied to the planetary gear crack fault,the solar gear tooth fault and the planetary gear bearing fault signal obtained by the planetary transmission test platform.The effectiveness of the method is verified by multi-dimensional comparison.
作者 刘秀丽 王鸽 吴国新 李相杰 Liu Xiuli;Wang Ge;Wu Guoxin;Li Xiangjie(Key Laboratory of Modern Measurement and Control Technology,Ministry of Education,Beijing Information Science and Technology University,Beijing 100192,China;Sinovel Wind Power Technology(Group)Co.Ltd.,Beijing 100000,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2022年第1期54-61,共8页 Journal of Electronic Measurement and Instrumentation
基金 国家重点研发计划项目(2020YFB1713203) 北京信息科技大学勤信人才项目(QXTCP C202120)资助
关键词 行星齿轮箱 故障特征凸显 PSO优化SVM 适应度函数 样本熵 planetary gearbox variational mode decomposition particle swarm optimization introduced support vector machine fitness function sample entropy
作者简介 刘秀丽,2016年于北京理工大学获得工学博士学位。现为北京信息科技大学机电测控教育部重点实验室助理研究员,主要研究方向为机电系统测控技术及应用。E-mail:liuxiulilw@163.com
  • 相关文献

参考文献10

二级参考文献99

  • 1张星辉,康建设,高存明,曹端超,滕红智.基于MoG-HMM的齿轮箱状态识别与剩余使用寿命预测研究[J].振动与冲击,2013,32(15):20-25. 被引量:14
  • 2程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 3肖志松,唐力伟,王虹,郑海起.行星齿轮箱中齿轮故障模式判别[J].振动与冲击,2005,24(3):125-127. 被引量:11
  • 4庞辉,方宗德,欧卫林.多平行齿轮耦合转子系统的振动特性分析[J].振动与冲击,2007,26(6):21-25. 被引量:28
  • 5SUN Hailiang,ZI Yanyang,HE Zhengjia,et al.Customized multiwavelets for planetary gearbox fault detection based on vibration sensor signals[J].Sensors,2013,13:1183-1209.
  • 6LEI Yaguo,KONG Detong,LIN Jing,et al.Fault detection of planetary gearboxes using new diagnostic parameters[J].Measurement Science and Technology,2012,23(5):1-10.
  • 7MCFADDEN P,SMITH J.An explanation for the asymmetry of the modulation sidebands about the tooth meshing frequency in epicyclic gear vibration[J].Proceedings of the Institution of Mechanical Engineers,1985,199(C1):65-70.
  • 8INALPOLAT M,KAHRAMAN A.A theoretical and experimental investigation of modulation sidebands of planetary gear sets [J].Journal of Sound and Vibration,2009,323:677-696.
  • 9FENG Zhipeng,ZUO Mingjian.Vibration signal models for fault diagnosis of planetary gearboxes [J].Journal of Sound and Vibration,2012,331:4919-4939.
  • 10PARKER R G,LIN J.Mesh phasing relationships in planetary and epicyclic gears[C]//Proceedings of DETCí03 ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference Chicago,Illinois,USA,September 2-6,2003:525-534.

共引文献322

同被引文献150

引证文献14

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部