期刊文献+

改进粒子群算法的传感器网络覆盖分布优化 被引量:12

Optimization of sensor network coverage distribution improved particle swarm optimization
在线阅读 下载PDF
导出
摘要 为解决基于粒子群算法的传感器网络覆盖分布中存在的收敛速度慢和指定目标点不能保证覆盖等问题,采用了一种基于虚拟势场法的改进粒子群算法。在传感器节点之间建立虚拟势场,推导出相互作用的连续虚拟力,减少了引力和斥力边界的振荡,加快了算法的收敛速度。增加指定目标点的势场,以提高目标点对粒子的吸附力,保证了目标点始终处于传感器的感知范围之内。研究结果表明:改进粒子群算法具有更快的收敛速度,提升了在保证指定目标点完全被覆盖的条件下区域覆盖率。研究结论有助于布置关键区域的传感器网络。 In order to solve the problems of slow convergence speed and insufficient coverage of specified target points in coverage distribution of sensor networks based on particle swarm optimization,an improved particle swarm optimization(PSO)algorithm based on virtual potential field(VPF)is proposed to optimize coverage distribution of sensor networks.The virtual potential field between sensor nodes is established and the continuous virtual force of interaction is derived.The continuous force field reduces the oscillation of gravitational and repulsive boundary and accelerates the convergence speed of the algorithm.Enlarging the potential field of the specified target point which is required to be covered and increasing the particle adsorption force ensure that the target point is always within the sensing range of the sensor.The results show that the proposed improved PSO algorithm has faster convergence speed,and has higher coverage rate while target points are fully covered.The research conclusions help to lay out sensor networks in key areas.
作者 王婷 隋江华 WANG Ting;SUI Jianghua(Applied Technology College,Dalian Ocean University,Dalian 116300,China;School of Navigation and Naval Architecture,Dalian Ocean University,Dalian 116023,China)
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2020年第3期280-286,共7页 Journal of Liaoning Technical University (Natural Science)
基金 辽宁省海洋与渔业厅项目(042217021) 农业农村部生态环境保护项目(171721104022291014) 农业部渔船检验局(070517020).
关键词 粒子群算法 传感器网络 虚拟势场 目标覆盖 区域覆盖 particle swarm optimization algorithm sensor networks virtual potential field target coverage area coverage
作者简介 王婷(1978-)女,辽宁大连人,硕士,讲师,主要从事计算机科学与技术方面的研究。;通讯作者:隋江华(1976-)女,辽宁大连人,博士,教授,主要从事船舶运动控制、轮机自动化等方面的研究。
  • 相关文献

参考文献12

二级参考文献105

共引文献298

同被引文献129

引证文献12

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部