期刊文献+

基于弹性网的两阶段模型平均方法及应用研究

Research on the Application of the Two-stage Model Averaging Method Based on Elastic Net
在线阅读 下载PDF
导出
摘要 针对高维数据集的复杂性,提出基于弹性网的两阶段模型平均方法,并将其应用于上证180指数的分析与预测研究中.首先通过弹性网进行变量降维并构建稀疏的候选模型;再根据Jackknife模型平均方法平均候选模型,最大限度用最少的成本获取更多的信息,减少有用信息的损失以提高模型预测精度,并使用各类预测误差指标来验证各预测模型的有效性.研究表明,两阶段模型平均方法可以有效降低上证180指数预测模型的预测误差;弹性网-JMA方法在高维有效样本下具有更好的预测表现和稳健性. In terms of the complexity of the high dimensional data sets, is this paper, the two-stage model averaging method is proposed based on elsatic net and applies it to the research of analyzing and forecasting SSE 180 Index. Firstly, the dimension of the variables is reduced through elastic net and the sparse candidate models is constructed, and then the candidate models is averaged according to Jackknife model averaging method to gain more information with maximum limit and least cost and to reduce the loss of useful information so as to improve the forecast accuracy of the model. Finally, various forecasting error indicators will be applied to verify the effectiveness of the prediction models. Research shows that the two-stage model averaging method can reduce the forecasting error of the SSE 180 Index prediction models and the EN-JMA method shows better forecasting performance and robustness under the high dimensional valid samples.
作者 魏巍 王星惠 陈晓星 Wei Wei;Wang Xinghui;Cheng Xiaoxing(Anhui University)
机构地区 安徽大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2022年第6期47-53,共7页 Natural Science Journal of Harbin Normal University
基金 国家自然科学基金项目(11701005) 中国博士后科学基金面上资助(2019M662146) 安徽省社会科学规划项目(AHSKQ2020D63)
关键词 弹性网 模型平均 模型预测 JACKKNIFE Elastic Net Model Averaging Model Prediction Jackknife
作者简介 通讯作者:王星惠
  • 相关文献

参考文献8

二级参考文献115

  • 1李俭富,马永开.基于证券价格时间序列的协整优化指数跟踪方法研究[J].系统工程理论与实践,2006,26(11):17-25. 被引量:12
  • 2J. M. Bates and C. M. J. Granger, The combination of forecasts, Operations Research Quarterly, 1969, 20: 451-468.
  • 3D. A. Bessler and J. A. Brandt, Forecasting livestock prices with individual and composite methods, Applied Economics, 1981, 13: 513-522.
  • 4R. T. Clemen and R. L. Winkler, Combining economic forecasts, Journal of Business and Economic Statistics, 1986, 4: 39-46.
  • 5P. Newbold and C. W. J. Granger, Experience with forecasting univariate time series and the combination of forecasts, Journal of the Royal Statistical Society, Series A, 1974, 2: 131-165.
  • 6R. F. Phillips, Composite forecasting: An integrated approach and optimality reconsidered, Journal of Business ~ Economic Statistics, 1987, 5: 389-395.
  • 7M. A. Clyde and E. George, Model uncertainty, Statistical Science, 2004, 19: 81-94.
  • 8D. Draper, Assessment and propagation of model uncertainty, Journal of the Royal Statistical Society: Series B, 1995, 57: 45-70.
  • 9J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, Bayesian model averaging: A tutorial, Statistical Science, 1999, 14: 382-417.
  • 10J. R. Magnus, O. Powell, and P. Prufer, A comparison of two averaging techniques with an application to growth empirics, Journal of Econometrics, 2009, in press, doi:10.1016/j.jeconom.2009.07.004.

共引文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部