期刊文献+

Novel synthesis of aluminum hydroxide gel-coated nano zero-valent iron and studies of its activity in flocculation-enhanced removal of tetracycline 被引量:1

Novel synthesis of aluminum hydroxide gel-coated nano zero-valent iron and studies of its activity in flocculation-enhanced removal of tetracycline
原文传递
导出
摘要 A newly designed aluminum hydroxide gel-coated nanoscale zero-valent iron(AHG@NZVI)with enhanced activity and dispersibility of NZVI was successfully synthesized.The AHG@NZVI composite was synthesized via control of the surface AHG content.AHG@NZVI-1,AHG@NZVI-2 and AHG@NZVI-3 were prepared under centrifugal mixing speeds of 1000,2000 and 4000 r/min,respectively.The activity of AHG@NZVI was evaluated by its tetracycline(TC) removal efficiency.The effects of AHG content,pH value,reaction temperature,and presence of competitive anions on TC removal were investigated.TC could be removed by both adsorption and chemical reduction on AHG@NZVI-2(centrifugal speed 2000 r/min) in a short time with high removal efficiency(≥98.1%) at the optimal conditions.Such excellent performance can be attributed to a synergistic interaction between aluminum hydroxide gel and NZVI:(1) AHG could enhance the stability and dispersity of NZVI;(2) aluminum hydroxide gel could absorb a certain amount of TC and Fe^2+/Fe^3+,which facilitated the mass transfer of TC onto the NZVI surface,resulting in acceleration of the reduction rate of TC by the AHG@NZVI composite;and(3) AHG-Fe^2+/Fe^3+could absorb a certain amount of TC by flocculation.The kinetics of TC removal by AHG@NZVI composite was found to follow a two-parameter pseudo-first-order model.The presence of competitive anions slightly inhibited the activity of AHG@NZVI systems for TC removal.Overall,this study provides a promising alternative material and environmental pollution management option for antibiotic wastewater treatment. A newly designed aluminum hydroxide gel-coated nanoscale zero-valent iron(AHG@NZVI)with enhanced activity and dispersibility of NZVI was successfully synthesized.The AHG@NZVI composite was synthesized via control of the surface AHG content.AHG@NZVI-1,AHG@NZVI-2 and AHG@NZVI-3 were prepared under centrifugal mixing speeds of 1000,2000 and 4000 r/min,respectively.The activity of AHG@NZVI was evaluated by its tetracycline(TC) removal efficiency.The effects of AHG content,pH value,reaction temperature,and presence of competitive anions on TC removal were investigated.TC could be removed by both adsorption and chemical reduction on AHG@NZVI-2(centrifugal speed 2000 r/min) in a short time with high removal efficiency(≥98.1%) at the optimal conditions.Such excellent performance can be attributed to a synergistic interaction between aluminum hydroxide gel and NZVI:(1) AHG could enhance the stability and dispersity of NZVI;(2) aluminum hydroxide gel could absorb a certain amount of TC and Fe2+/Fe3+,which facilitated the mass transfer of TC onto the NZVI surface,resulting in acceleration of the reduction rate of TC by the AHG@NZVI composite;and(3) AHG-Fe2+/Fe3+could absorb a certain amount of TC by flocculation.The kinetics of TC removal by AHG@NZVI composite was found to follow a two-parameter pseudo-first-order model.The presence of competitive anions slightly inhibited the activity of AHG@NZVI systems for TC removal.Overall,this study provides a promising alternative material and environmental pollution management option for antibiotic wastewater treatment.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第3期194-205,共12页 环境科学学报(英文版)
基金 supported by the National Natural Science Foundation of China (No.51968031) the National Key Research and Development Program of China (No. 2018YFC1900301).
关键词 NANOSCALE zerovalent iron Aluminum HYDROXIDE GEL SYNERGISTIC effect TETRACYCLINE FLOCCULATION Nanoscale zerovalent iron Aluminum hydroxide gel Synergistic effect Tetracycline Flocculation
作者简介 Corresponding authors:Xiangyu Wang,E-mail addresses:imusthlee2014@sina.com;Corresponding authors:Ping Ning,E-mail addresses:ningping58_2015@sina.com.
  • 相关文献

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部