期刊文献+

A meteorologically adjusted ensemble Kalman filter approach for inversing daily emissions:A case study in the Pearl River Delta,China 被引量:2

原文传递
导出
摘要 The conventional Ensemble Kalman filter(EnKF),which is now widely used to calibrate emission inventories and to improve air quality simulations,is susceptible to simulation errors of meteorological inputs,making accurate updates of high temporal-resolution emission inventories challenging.In this study,we developed a novel meteorologically adjusted inversion method(MAEInv)based on the EnKF to improve daily emission estimations.The new method combines sensitivity analysis and bias correction to alleviate the inversion biases caused by errors of meteorological inputs.For demonstration,we used the MAEInv to inverse daily carbon monoxide(CO)emissions in the Pearl River Delta(PRD)region,China.In the case study,60%of the total CO simulation biases were associated with sensitive meteorological inputs,which would lead to the overestimation of daily variations of posterior emissions.Using the new inversion method,daily variations of emissions shrank dramatically,with the percentage change decreased by 30%.Also,the total amount of posterior CO emissions estimated by the MAEInv decreased by 14%,indicating that posterior CO emissions might be overestimated using the conventional EnKF.Model evaluations using independent observations revealed that daily CO emissions estimated by MAEInv better reproduce the magnitude and temporal patterns of ambient CO concentration,with a higher correlation coefficient(R,+37.0%)and lower normalized mean bias(NMB,-17.9%).Since errors of meteorological inputs are major sources of simulation biases for both low-reactive and reactive pollutants,the MAEInv is also applicable to improve the daily emission inversions of reactive pollutants.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第4期233-248,共16页 环境科学学报(英文版)
基金 supported by the National Key Research and Development Program of China(No.2018YFC0213905) National Natural Science Foundation of China(Nos.91744310and 41805068) Natural Science Foundation of Guangdong Province(No.2018A030310654)
作者简介 Corresponding authors:Zhijiong Huang,E-mails:huangzj@jnu.edu.cn(Z.Huang);Corresponding authors:Min He,Hemin105@outlook.com(M.He).
  • 相关文献

参考文献4

二级参考文献13

共引文献32

同被引文献25

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部