摘要
甲醛是主要的室内污染气体,严重危害人的身体健康.ZnSnO3是一种气敏性能优良的三元金属氧化物材料,我们尝试采用还原氧化石墨烯(rGO)复合和Fe掺杂来优化其气敏性能,通过水热法制备了Fe掺杂rGO/ZnSnO3复合材料.采用X射线衍射、拉曼光谱、红外光谱、X射线光电子能谱、扫描/透射电子显微镜、紫外-可见漫反射光谱仪、荧光光谱及电子自旋共振等表征手段对材料的形貌结构、化学组成、缺陷能级等进行分析,并以室内污染气体甲醛为目标气体对其灵敏度、响应恢复时间、工作温度、选择性、稳定性及湿度影响进行了系统研究.结果表明,复合rGO提高了材料的比表面积、电子迁移率;rGO与ZnSnO3形成了p-n异质结,引起电阻的剧烈变化,降低了最佳工作温度,提高了ZnSnO3灵敏度;Fe掺杂增加了ZnSnO3中的氧空位缺陷,促进了ZnSnO3表面德拜电子耗尽层的形成,进一步优化了ZnSnO3的气敏性能.本文为ZnSnO3气敏性能的优化提供了技术支持和理论依据.
Formaldehyde is the main indoor air pollution gas,which seriously affects people’s health.ZnSnO3 is a ternary metal oxide material with excellent gas-sensing performance.In this work,the rGO and Fe-doing are used to optimize ZnSnO3 gas-sensing properties further,and the Fe-doped reduced graphene/ZnSnO3 nanocomposite is prepared by the hydrothermal method.The technologies of Xray diffraction,Roman,Infrared spectrum,X-ray photoelectron spectrum,scanning electron microscope,transmission electron microscope,UV-visible diffuse-reflectance spectrum,and electron spin-resonance spectroscopy are used to characterize the morphology,structure,chemical composition,defects,and energy level of the products,while the corresponding gas-sensing properties of sensitivity,response-recovery time,optimum working temperature,selectivity,stability,and humidity effects are determined using formaldehyde as a target gas.The results revealed that using the rGO improved the specific surface area and electron mobility,formed p-n heterojunction,caused a drastic change in resistance,reduced the optimum working temperature,and enhanced the gas-sensing properties of ZnSnO3.Meanwhile,the Fe-doping increased the oxygen vacancies defects and promoted the Debye electron depletion layer on the surface of ZnSnO3,which furtherly enhanced the gas-sensing performance of ZnSnO3.This work provides the technical support and theoretical basis for the optimization of ZnSnO3 gas-sensing properties.
作者
郭威威
赵邦渝
周麒麟
李晓丹
GUO WeiWei;ZHAO BangYu;ZHOU QiLin;LI XiaoDan(Chongqing Key Laboratory of Catalysis and New Functional Materials,College of Environment and Resources,Chongqing Technology and Business University,Chongqing 400067,China)
出处
《中国科学:技术科学》
EI
CSCD
北大核心
2020年第2期136-150,共15页
Scientia Sinica(Technologica)
基金
国家自然科学基金(批准号:61604025)
重庆市基础研究与前沿探索项目(编号:cstc2018jcyjAX0500)
重庆市教育委员会科学技术研究计划青年项目(编号:KJQN201800809)
催化与环境新材料重庆市重点实验室开放基金项目(编号:CQCM-2017-02)资助.
作者简介
郭威威,E-mail:gwctbu@163.com