摘要
                
                    为了能快速、有效地识别视频中的车辆信息,文中结合YOLOv3算法和CNN算法的优点,设计了一种能实时识别车辆多标签信息的算法。首先,利用具有较高识别速度和准确率的YOLOv3实现对视频流中车辆的实时监测和定位。在获得车辆的位置信息后,再将车辆信息传入经过简化与优化的类VGGNet多标签分类网络中,对车辆进行多标签标识。最后将标签信息输出至视频流,得到对视频中车辆的实时多标签识别。文中训练与测试数据集来源为KITTI数据集和通过Bing Image Search API获取的多标签数据集。实验结果证明,所提方法在KITTI数据集上的mAP达到了91.27,多标签平均准确率达到80%以上,视频帧率达到35fps,在保证实时性的基础上取得了较好的车辆识别和多标签分类效果。
                
                In order to quickly and effectively identify vehicle information in video,this paper combines the advantages of YOLOv3algorithm and CNN algorithm to design an algorithm that can identify vehicle multi-label information in real time.Firstly,the high recognition speed and accuracy of YOLOv3are used to realize real-time monitoring and positioning of vehicles in video stream.After obtaining the vehicle location information,the vehicle information is passed into the improved simplified and optimized VGGNet multi-label classification network to identify the vehicle with multiple tags.Finally,the label information is output to the video stream to obtain real-time multi-label recognition of vehicles in video.The training and test data sets in this paper are derived from KITTI data sets and multi-label data sets obtained through Bing Image Search API.Experimental results show that the mAP of the proposed method on KITTI data set reaches 91.27,the average accuracy of multi-label is more than 80%,and the frame rate of video reaches 35fps.It achieves good results in vehicle identification and multi-label classification on the basis of ensuring real-time performance.
    
    
                作者
                    顾曦龙
                    宫宁生
                    胡乾生
                GU Xi-long;GONG Ning-sheng;HU Qian-sheng(College of Computer Science and Technology,Nanjing Tech University,Nanjing 211816,China)
     
    
    
                出处
                
                    《计算机科学》
                        
                                CSCD
                                北大核心
                        
                    
                        2022年第S02期542-548,共7页
                    
                
                    Computer Science
     
            
                基金
                    国家重点基础研究发展计划(973计划)(2005CB321901)
                    基于高压缩比技术的移动环境执法视频采集与管理系统(ZX16487470001)
                    软件开发环境国家重点实验室开放课题(BUAA-SKLSDE-09KF-03)
            
    
                关键词
                    计算机视觉
                    车辆识别
                    多标签识别
                    目标检测
                    深度学习
                
                        Computer vision
                        Vehicle recognition
                        Multi-label recognition
                        Target detection
                        Deep learning
                
     
    
    
                作者简介
顾曦龙,781537596@qq.com,born in 1993,postgraduate.His main research interests include deep learning and target detection;通信作者:宫宁生,chinahqs@163.com,born in 1958,Ph.D,professor.His main research interests include mathematical logic,BP neural network,image processing,pattern recognition,data mining and so on