期刊文献+

不同温度和扰动应变作用下纳米微裂纹的晶体相场研究 被引量:6

Propagation of Nanoscale Microcrack Under Disturbance Strain at Different Temperatures:Phase⁃Field⁃Crystal Model
原文传递
导出
摘要 用晶体相场模型模拟扰动应变下纳米微裂纹的扩展行为,探讨扰动频率及温度对微裂纹扩展行为及稳定性的影响。结果表明:温度提升在扰动频率较小时能引起脆韧转变,裂纹稳定性因温度升高而下降。扰动频率的提升在温度低于脆韧转变温度时,能在演化初期引起脆韧转变,之后将抑制脆性扩展,但无法引起韧脆转变;当温度高于脆韧转变温度时,扰动频率不再改变裂纹扩展模式。裂纹稳定性随扰动频率的增大先下降后上升。 A phase⁃field⁃crystal model is used to simulate microcrack growth under disturbance strain.Influences of disturbance frequency and temperature on growth behavior and stability of microcrack are discussed.It shows that:①Fracture mode is affected by temperature of the system under certain conditions.②Influence of disturbance frequency on crack propagation behavior is affected by temperature of the system.③Stability of crack decreases firstly and then increases with the increase of disturbance frequency.The increase of temperature leads to the decrease of crack stability.
作者 李建伟 项璇 王景栋 胡石 陈铮 贺元骅 LI Jianwei;XIANG Xuan;WANG Jingdong;HU Shi;CHEN Zheng;HE Yuanhua(Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province,Civil Aviation Flight University of China,Guanghan,Sichuan 618307,China;State Key Laboratory of Solidification Processing,Northwestern Poly Technical University,Xi’an,Shaanxi 710072,China)
出处 《计算物理》 CSCD 北大核心 2022年第6期717-726,共10页 Chinese Journal of Computational Physics
基金 国家重点研发计划(2018YFC0809500) 国家自然科学基金(U2033206) 四川省科技计划(2021YFSY0001) 四川省科技创新苗子工程(2021125)资助项目
关键词 晶体相场 扰动应变 温度 微裂纹 phase⁃field⁃crystal disturbance strain temperature microcrack
作者简介 第一作者:李建伟(1995-),男,硕士生,主要从事计算物理研究,E⁃mail:lijianwei5566@126.com;通信作者:贺元骅(1965-),男,汉族,硕士,教授,主要研究方向为金属材料,E⁃mail:heyuanhua@cafuc.edu.cn
  • 相关文献

参考文献10

二级参考文献78

  • 1罗晋,祝文军,林理彬,贺红亮,经福谦.单晶铜在动态加载下空洞增长的分子动力学研究[J].物理学报,2005,54(6):2791-2798. 被引量:22
  • 2高克玮,陈奇志,褚武扬,肖纪美.纳米级解理微裂纹的形核和扩展[J].中国科学(A辑),1994,24(9):993-1000. 被引量:8
  • 3赵艳红,李英骏,杨志安,张广财.带孔洞的金属拉伸的分子动力学[J].计算物理,2006,23(3):343-349. 被引量:14
  • 4李洪玺,刘全稳,王健,徐赋海.弱凝胶流动规律及其提高采收率机理新认识[J].油气地质与采收率,2006,13(4):85-87. 被引量:22
  • 5罗伯·D(德).计算材料学[M].项金钟,吴兴惠译.北京:化学工业出版社,2002.
  • 6Elder K R, Provatas N, Berry J, et al. Phase-field crystal modeling and classical density functional theory of freezing [J]. Phys Rev, 2007,75(6):064107.
  • 7Elder K R,Katakowski M,et al. Modeling elasticity in crys tal growth [J]. Phys Rev Lett,2002,88(24).. 245701.
  • 8Provatas N, Dantzig J A, Athreya B, et al. Using the phase field crystal method in the multi-scale modeling of micro- structure evolution[J]. JOM, 2007,59 : 83.
  • 9Huang Z F, Elder K R, Provatas N. Phase-field-crystal dy- namics for binary systems: Derivation from dynamical densi ty functional theory, amplitude equation formalism, and ap- plications to alloy heterostructures[J]. Phys Rev B, 2010,82 (2) :021605.
  • 10Jaatinen A, Ala-Nissila T. Eighth order phase-field-crystal model for two-dimensional crystallization [J]. Phys Rev E, 2010,82(6) :061602.

共引文献70

同被引文献30

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部