期刊文献+

MOSA工艺对剩余污泥减量化效果研究

The effect of excess sludge reduction under different operating modes of MOSA process
在线阅读 下载PDF
导出
摘要 改良好氧-沉淀-厌氧(MOSA)工艺是一种污泥源头减量技术,可以有效的从源头削减剩余污泥。将传统工艺改造为MOSA工艺后,可以在不影响出水水质情况下使剩余污泥减少。利用镇安污水处理厂一期东西两组工艺一致的条件下,通过改变厌氧反应器的运行方式改变其污泥浓度,研究厌氧反应器不同运行方式和好氧反应器污泥浓度对污泥减量化效果的影响。研究结果表明:改变运行方式后,在厌氧反应器中污泥浓度为8583mg/L时,MOSA工艺稳定后可以获得最高32.99%的污泥减量化效果,污泥浓度为7685mg/L和14348mg/L时获得24.48%和27.35%的减量化效果。同时研究也表明好氧池污泥浓度的变化对减量化效果也会有一定的影响。 The modified oxic-settling-anaerobic(MOSA)process is used to reduce sludge from the source and solve surplus sludge problem.The addition of MOSA process can reduce the excess sludge production by 24.5%,without affecting the effluent quality.In order to find out whether the sludge reduction effect can be further optimized,the study runs different MOSA operating parameters in two systems.Except for the MOSA tank,two systems share the same influent and run under the same conditions.It’s found out that the effect of excess sludge reduction can be increased to 33.0%by improving operation mode.
作者 孙连鹏 郭伟斌 邓欢忠 林玉姬 冯惠 金辉 郭五珍 罗旺兴 Sun Lianpeng;Guo Weibin;Deng Huanzhong;Lin Yuji;Feng Hui;Jin Hui;Guo Wuzhen;Luo Wangxing(School of Environmental Science and Engineering,Sun Yat-Sen University,Guangzhou 510006,China;Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology,Guangzhou 510275,China;Foshan Water Group,Foshan 528000,China)
出处 《给水排水》 CSCD 北大核心 2020年第S01期183-185,191,共4页 Water & Wastewater Engineering
基金 广东省教育厅重点项目(2016KZDXM003) 广州市科技计划重点项目(201903010030)
关键词 污泥减量 运行方式 MOSA工艺 污水处理 Sludge reduction Operating mode MOSA process Wastewater treatment
作者简介 孙连鹏,男,博士,教授,主要研究方向为水污染治理、污泥减量及资源化技术。E-mail:eesslp@mail.sysu.edu.cn
  • 相关文献

参考文献2

二级参考文献16

  • 1Zhao Q L, Kugel G. Thermopholic/mesophilic digestion of sewage sludge and organic waste [J]. Journal of Environment Science and Health, 1996,A31(9):2211-2231.
  • 2Wei Y S, van Houten R T, Borger A R, et al. Minimization of excess sludge production for biological wastewater treatment [J]. Water Research, 2003,37( 18):4453 -4467.
  • 3Liu Y, Tay J H. Strategy for minimization of excess sludge production from the activated sludge process [J]. Biotechnology Advances, 2001,19(2):97-107.
  • 4Low W W, Chase H A, Milner M G, et al. Uncoupling of metabolism to reduce biomass production in the activated sludge process [J]. Water Research, 2000,34(12):3204-3212.
  • 5Chen G H, Mo H K, Liu Y. Utilization of a metabolic uncoupler, 3,3', 4',5-tetrachlorosalicylanilide(TCS) to reduce sludge growth in activated sludge culture [J]. Water Research, 2002,36(8): 2077-2083.
  • 6Sakai Y, Fukase T, Yasui H, et al. An activated sludge process without excess sludge production [J]. Water Science and Technology, 1997,36:163-170.
  • 7Saby S, Djafer M, Chen G H. Feasibility of using a chlorination step to reduce excess sludge in activated sludge process [J]. Water Research, 2002,36(3):656-666.
  • 8Rocher M, Roux G, Goma G, et al. Excess sludge reduction in activated sludge processes by integrating biomass alkaline heat treatment [J]. Water Science and Technology, 2001,44(2/3): 437-444.
  • 9Luxmy B S, Kubo T, Yamamoto K. Sludge reduction potential of metazoa in membrane bioreactors [J]. Water Science and Technology, 2002,44(10): 197-202.
  • 10Wei Y S, van Houten R T, Borger A R, et al. Comparison performances of membrane bioreactor (MBR) and conventional activated sludge(CAS) processes on sludge reduction induced by Oligochaete [J]. Environmental Science and Technology, 2003,37(14):3171-3180.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部