期刊文献+

基于深度学习的历史建筑功能原型识别研究——以中东铁路建筑群(黑龙江段)为例

Deep Learning to Identify Functional Prototypes among Historic Buildings Case Study of Heilongjiang Section along Chinese Eastern Railway
原文传递
导出
摘要 针对历史建筑多尺度保护中的原型识别问题,尝试将深度学习运用到其下采样的识别推导过程,利于价值信息的精炼与传导。通过采集历史建筑图像与基础信息,构建适配历史建筑功能分类的数据集与深度学习模型,评估模型性能并降维可视化模型分类结果,依据样本相似性结构与核密度估计值识别功能原型,并在中东铁路建筑群进行技术应用,分析沿线功能原型在空间分布、类型分化、要素表达三方面的特征差异,为多尺度保护传承提供技术支撑。 In response to the prototype identification problem in multi-scale conservation of historical buildings,deep learning was applied to its reduction process in down-sampling,contributing to information refinement and transfer with value.This paper built a function dataset and deep learning model adapted function classification by collecting images and basic information about historic buildings.Then the model was trained and evaluated performance.The functional prototypes were identified based on universal similarity structure by kernel density estimates,which visualized the classification results through dimensionality reduction,taking historic buildings along the Chinese Eastern Railway as an example for technical application and further analyzing the characteristic differences of functional prototypes along the route in terms of spatial distribution,typological division,and elemental representation,effectively providing technical support for multi-scale heritage protection and inheritance.
作者 李沛伦 赵志庆 谢佳育 陈玉玲 LI Peilun;ZHAO Zhiqing;XIE Jiayu;CHEN Yuling
出处 《建筑学报》 CSSCI 北大核心 2024年第S01期60-65,共6页 Architectural Journal
基金 国家自然科学基金项目(T2261139560,52278055) 中央高校基本科研业务费专项资金(HIT.DZJJ.2023081)
关键词 历史建筑 功能原型 深度学习 图像分类 中东铁路 historic building functional prototype deep learning image classification Chinese Eastern Railway
作者简介 通讯作者:陈玉玲
  • 相关文献

参考文献30

二级参考文献319

共引文献900

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部