期刊文献+

精英导向型差分变异多目标烟花算法及其在模拟集成电路设计中的应用 被引量:3

Elitist guided multi-objective fireworks algorithm with difference variation and its application in analog integrated circuits
原文传递
导出
摘要 在应用微型化技术进行大规模模拟集成电路设计过程中,存在多个性能指标相互冲突的问题,因此,提出一种精英导向型多目标差分变异烟花算法(GMOFWA-DV),利用粒子进化信息引导爆炸,提高算法搜索效率,同时采用差分算法中变异、交叉综合变异方式,增强粒子间信息交流以及导向策略的适用性.将该方法与其他3种算法进行仿真实验比较,实验结果验证了所提出算法的有效性.将该方法应用于CMOS模拟集成电路设计参数优化的实际工程应用中,可以降低模拟集成电路设计的开发周期. In the process of large-scale analog integrated circuit design using miniaturization technology,there are some problems of conflicting performance indicators.An elitist guided multi-objective fireworks algorithm with difference variation(GMOFWA-DV)is proposed in this paper.Particle evolution information is used to guide the explosion and improve the efficiency of the algorithm.In order to enhance the information exchange between particles and facilitate the application of the guidance strategy,the mutation and cross operators in the differential algorithm are adopted in variation of the GMOFWA-DV.Simulation experiments of the comparision of the designed algorithm with 3 others are conducted.The experimental results verify the effectiveness of the proposed algorithm.The application of the GMOFWA-DV in the practical engineering application of CMOS analog integrated circuit design parameter optimization can reduce the development cycle of analog integrated circuit design.
作者 陈思溢 胡拚 黄辉先 CHEN Si-yi;HU Pin;HUANG Hui-xian(College of Information Engineering,Xiangtan University,Xiangtan 411105,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第1期55-64,共10页 Control and Decision
基金 国家部委预先研究基金项目(20170101) 湘潭大学校级科研项目(2017XZX22) 湘潭大学省级重点学科项目(11kz1kz05002).
关键词 CMOS模拟电路 优化设计 精英导向 差分 多目标 烟花算法 CMOS analog circuit optimal design elitist guided difference multi-objective fireworks algorithm
作者简介 通讯作者;陈思溢,E-mail:c.siyi@xtu.edu.cn.
  • 相关文献

参考文献2

二级参考文献20

  • 1Kennedy J, Ebethart R. Particle swarm optimization[J]. Swarm Intelligence, 2007, 1(1): 33-57.
  • 2Karaboga D, Bastuk B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony(ABC) algorithm[J]. J of Global Optimization, 2007, 39(3): 459-471.
  • 3Dorigo M, Maniezzo V. Ant system: Optimization by a colony of cooperating agents[J]. Systems, Man, and Cybernetics, 1996, 26(1): 29-41.
  • 4Tan Y, Zhu Y. Fireworks algorithm for optimization[J]. Lecture Notes in Computer Science, 2010: 21(7): 355-364.
  • 5Bureerat S. Hybrid population-based incremental learning using real codes[C]. Learning and Intelligent Optimization. Rome: Spinger-Verlag, 2011: 379-391.
  • 6Gao H, Diao M. Cultural firework algorithm and its application for digital filters design[J]. Int J of Modelling, Identification and Control, 2011, 14(4): 324-331.
  • 7Zhen Y J, Xu X L, Ling H F, et al. A Hybrid fireworks optimization method with differential evolution operators[J]. Neurocomputing, 2015, 148(148): 75-82.
  • 8Zheng S, Janecek A, Tan Y. Enhanced fireworks algorithm[C]. Evolutionary Computation. Cancun: IEEE, 2013: 2069-2077.
  • 9Liang J, Qin A, Suganthan P, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Trans on Evolutionary Computation, 2006, 10(3): 281-295.
  • 10Rashedi E, Nezamabadi H, Saryazdi S. GSA: A gravitational search algorithm[J]. Information Science, 2009, 179(13): 2232-2248.

共引文献30

同被引文献22

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部