期刊文献+

安宁市森林火灾的两种预测方法浅析 被引量:3

A brief analysis on two prediction methods for forest fire in Anning city
原文传递
导出
摘要 为了研究安宁市森林火灾的空间分布和预测森林火灾的发生,选取了安宁市1986年至2020年有记载的森林火灾火点数据,构建广义线性模型和ARIMA算法模型研究森林火灾火点的空间分布预测和气候环境因子的时间序列分析,并对两种预测方法进行了对比分析。研究结果显示:广义线性模型更适合用来研究人类活动引发的火灾,且对样本容量要求较高,ARIMA算法模型更适合研究自然引发的火灾,更注重气候环境因子的变化。两种预测模型的预测都达到了中精度水平,还有进一步的优化空间。 In order to research the spatial distribution of forest fire and predict the occurrence of forest fires,we selected recorded forest fire data from 1986 to 2020 in Anning City.Using this data,we constructed a generalized linear model and ARIMA algorithm model to study the spatial distribution of forest fire fires and time series analysis of forecast and climate factors,and a comparative analysis of the two forecasting methods.The research results show that the generalized linear model is more suitable for studying fires caused by human activities,and requires a higher sample size.The ARIMA algorithm model is more suitable for studying fires caused by nature and pays more attention to changes in climate and environmental factors.The predictions of the two prediction models have reached the medium accuracy level,and there is still room for further optimization.
作者 梁日清 角从斌 田波 杨增芳 LIANG Riqing;JUE Congbin;TIAN Bo;YANG Zengfang(Ecological Branch of Yunnan Forestry Survey and Planning Institute,Kunming 650224)
出处 《林业建设》 2021年第1期20-25,共6页 Forestry Construction
关键词 森林火灾预测 广义线性模型 ARIMA算法模型 空间分布 时间序列分析 Forest fire forecast generalized linear model ARIMA algorithm model spatial distribution time series analysis
作者简介 梁日清,男,工程师,从事林业调查规划及设计工作。
  • 相关文献

二级参考文献32

  • 1倪红伟,唐树本.黑龙江省植被的区系组成特征[J].国土与自然资源研究,1995(3):57-61. 被引量:13
  • 2Sandholt I, Rasmussen K, Andersen J. A Simple Interpre-tation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status [J]. Remote Sensing of Environment, 2002, 79: 213-224.
  • 3吴志伟,常禹,贺红士,等.2011.大兴安岭呼中林区林火时空分布特征分析.广东农业学报,(5):189-193.
  • 4Bar Massada A, Syphard AD, Stewart SI, et al. 2012. Wildfire ignition-distribution modelling: A comparative study in the Huron-Manistee National Forest, Michigan, USA. Interna- tional Journal of Wildland Fire, http://dx, doi. org/10. 107 I/WF11178.
  • 5Barbet-Massin M, Jiguet F, Albert CH, et al. 2012. Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution,3: 327-338.
  • 6Dickson BG, Prather JW, Xu YG, et al. 2006. Mapping the probability of large fire occurrence in northern Arizona, USA. Landscape Ecology, 21: 747-761.
  • 7Dixon P/I, Ellison AM, Goteili NJ. 2005. Improving the preci- sion of estimates of the frequency of rare events. Ecology, 86: 1114-1123.
  • 8Elith J, Graham CH, Anderson RP, et al. 2006. Novel meth-ods improve prediction of species' distributions from occur- rence data. Ecography, 29: 129-151.
  • 9Guisan A, Edwards TC, Hastie T. 2002. Generalized linear and generalized additive models in studies of species distribu- tions: Setting the scene. Ecological Modelling, 15"7: 89- 100.
  • 10Gavier-Pizarro GI, Radeloff VC, Stewart SI, et al. 2010. Hous- ing is positively associated with invasive exotic plant spe- cies richness in New England, USA. Ecological Applica- tions, 20: 1913-1925.

共引文献31

同被引文献32

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部