摘要
在先进工艺下,VLSI布线产生设计规则违例(DRC)的原因十分复杂,这使得全局布线的拥塞度不再能准确地反映DRC的分布。针对这个问题,提出了一种基于深度学习的预测布线违例分布的方法。该方法只使用布局阶段的引脚、线网和宏模块等版图信息作为特征和CSMOTE算法平衡数据集,无需进行全局布线,然后使用卷积神经网络对数据进行训练,最后用训练模型预测M2 short和cut group space布线违例的分布。该方法在一个采用先进工艺的真实工业设计上进行了测试。结果显示,该方法预测M2 short的准确率为93.4%,F1值为0.78;预测cut group space的准确率为92.5%,F1值为0.78。
The causes of VLSI design rule check violation(DRC)in advanced technology are very complex,which makes the congestion map of global routing can’t reflect the distribution of DRCs accurately.In this paper,a deep-learning based approach is proposed for predicting DRCs.Pin,net and macro information of placement rather than global routing were used as features.Then,these features were trained by a convolutional network after being processed by CSMOTE.Finally,M2 short and cut group space were predicted by this model.The method was tested in a real industrial design in advanced technology node.Experimental results show that the accuracy and F1 score on M2 short is 93.4%and 0.78 respectively,while 92.5%and 0.78 on cut group space.
作者
梁硕
李海华
LIANG Shuo;LI Haihua(School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,P.R.China)
出处
《微电子学》
CAS
北大核心
2022年第6期1027-1032,共6页
Microelectronics
关键词
布线违例
深度学习
电子设计自动化
布局
布线规则检查
detailed routing violation
deep learning
electronic design automation
routing
design rule check
作者简介
梁硕(1997—),男(汉族),河北沧州人,硕士研究生,主要从事电子设计自动化研究设计;李海华(1974—),女(汉族),上海人,博士,副教授,主要从事集成电路、微纳加工技术与器件。