期刊文献+

ARIMA乘积季节模型预测我国戊肝的发病趋势 被引量:10

The incidence of hepatitis E in China predicted by multiple seasonal ARIMA model
在线阅读 下载PDF
导出
摘要 目的:根据戊型肝炎(戊肝)季节性、趋势性流行现象,建立求和自回归移动平均(autoregressive integrated moving average,ARIMA)乘积季节模型对我国戊肝发病进行预测。方法:应用SPSS23.0软件对2004年1月—2018年6月我国戊肝传染病疫情月度数据建模,对2018年下半年戊肝发病数进行预测,以该时段疫情数据评估模型的预测效果。结果:将ARIMA(2,1,0)(0,1,1)12和ARIMA(0,1,2)(0,1,1)12两个模型预测的平均值作为预测值,预测结果的平均相对误差为4.69%,标准差为3.27%。结论:ARIMA乘积季节模型拟合及预测效果良好,能够较好地描述该时段我国戊肝的发病趋势,为戊肝预防控制措施的制定以及卫生资源的合理配置提供一定的科学依据。 Objective:According to the seasonal and trend epidemic phenomenon of hepatitis E,the multiple seasonal ARIMA model was established to predict the infectious incidence of hepatitis E in China.Methods:SPSS23.0 software was used to model the monthly data of the epidemic of hepatitis E infectious diseases in China from January 2004 to June 2018,so as to predict the incidence of hepatitis E in the second half of 2018 and to evaluate the prediction effect of the model through the epidemic data during the period.Results:The average values of the prediction of the two models,ARIMA(2,1,0)(0,1,1)12 and ARIMA(0,1,2)(0,1,1)12,were used as the prediction values,the average relative error of the prediction was 4.69%and the standard deviation was 3.27%.Conclusion:Results of fitting and prediction of the multiple seasonal ARIMA model are good.The model can better describe the incidence trend of hepatitis E in China during the period,and provide certain scientific basis for the formulation of preventive control measures against hepatitis E and reasonable allocation of health resources.
作者 丁勇 吴静 武丹 李婉 张蓓蓓 DING Yong;WU Jing;WU Dan;LI Wan;ZHANG Beibei(Kangda College,Nanjing Medical University,Lianyungang 222000;School of Biomedical Engineering and Information,Nanjing Medical University,Nanjing 210029,China)
出处 《南京医科大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第11期1725-1729,共5页 Journal of Nanjing Medical University(Natural Sciences)
基金 南京医科大学科技发展基金(2017NJMU229) 江苏省高校自然科学研究(19KJD330001)
关键词 戊型肝炎 ARIMA乘积季节模型 时间序列 预测 hepatitis E multiple seasonal ARIMA model time series prediction
作者简介 通信作者:张蓓蓓,E⁃mail:bbzhang@njmu.edu.cn
  • 相关文献

参考文献9

二级参考文献145

共引文献119

同被引文献104

引证文献10

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部