期刊文献+

基于ICEEMD-ICA与MDP准则的变形监测数据去噪方法 被引量:10

Denoising Method for Deformation Monitoring Data Based on ICEEMD-ICA and MDP Principle
原文传递
导出
摘要 针对经验模态分解(empirical mode decomposition,EMD)方法存在信噪分离不准确的缺陷,以及独立分量分析(independent component analysis,ICA)存在不确定性的问题,提出了一种改进完备集成经验模态分解(improved complete ensemble empirical mode decomposition,ICEEMD)、ICA与最小失真准则(minimal distortion principle,MDP)相结合进行变形数据去噪的方法。首先,使用ICEEMD方法对变形监测数据进行有效分解,并以此构建虚拟噪声信号;其次,对虚拟噪声进行二次ICEEMD分解,提取更接近真实噪声的二次虚拟噪声信号,再以二次虚拟噪声和原变形数据组成输入观测通道,使用ICA进行处理;然后,通过计算ICA处理后的独立分量与输入信号的相关系数,解决独立分量的排序不确定性与相位不确定性问题;最后,使用MDP准则有效解决了独立分量的幅值不确定性。对加噪仿真数据和实际桥梁GNSS变形监测数据进行详细分析,结果表明,所提方法可取得良好的去噪效果,有效提升去噪的性能指标,充分验证了所提方法在变形监测数据去噪中具备的可行性和有效性。 Objectives:Considering the inaccurate separation of signal and noise of empirical mode decomposition(EMD)method and the uncertainty of independent component analysis(ICA),a new method for denoising deformation data with improved complete ensemble empirical mode decomposition(ICEEMD),independent component analysis(ICA)and minimal distortion principle(MDP)is proposed.Methods:Firstly,ICEEMD method is used to decompose the deformation monitoring data effectively,and the virtual noise signal is constructed.Secondly,ICEEMD decomposition of virtual noise is carried out to extract twice virtual noise signal which is closer to real noise.The input observation channel is composed of twice virtual noise and original deformation data and processed by ICA.Then,by calculating the correlation coefficient between the independent components and the input signal after ICA processing,the sorting uncertainty and phase uncertainty of independent components can be solved.Finally,the MDP criterion is used to effectively solve the amplitude uncertainty of independent components.Results:Through the detailed analysis of noisy simulation data and actual bridge GNSS deformation monitoring data,the results show that the proposed method has achieved good denoising effect and can effectively improve the performance of denoising.Conclusions:It also fully verified the feasibility and effectiveness of the proposed method indenoising of deformation monitoring data.
作者 许承权 范千 XU Chengquan;FAN Qian(Geography and Ocean College,Minjiang University,Fuzhou 350108,China;College of Civil Engineering,Fuzhou University,Fuzhou 350108,China)
出处 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2021年第11期1658-1665,共8页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金(41404008) 福建省自然科学基金(2020J01834) 福建省交通运输科技项目(202103) 厦门市建设局科技计划(XJK2020-1-7) 福建省住建厅科技研究开发计划(2020-K-73) 龙岩市科技计划(2020LYF9005) 广西空间信息与测绘重点实验室开放基金(19-185-10-03)
关键词 改进完备集成经验模态分解 独立分量分析 二次虚拟噪声 最小失真准则 变形监测数据去噪 improved complete ensemble empirical mode decomposition(ICEEMD) independent component analysis(ICA) twice virtual noise minimal distortion principle denoising for deformation monitoring data
作者简介 第一作者:许承权,博士,副教授,主要研究方向为GNSS变形监测、无人机摄影测量技术。30418388@qq.com;通讯作者:范千,博士,副教授。fanqian@fzu.edu.cn
  • 相关文献

参考文献12

二级参考文献112

共引文献179

同被引文献137

引证文献10

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部