期刊文献+

一种基于空间金字塔特征的图像分类降维算法 被引量:4

Dimension Reduction Algorithm for Image Classification Based on Spatial Pyramid Matching Features
在线阅读 下载PDF
导出
摘要 有效去除图像特征中的冗余是图像分类研究领域的一个重要内容。在SPM(Spatial Pyramid Matching)图像分类算法的基础上,结合主成分分析方法(Principal Component Analysis,PCA),提出了一种新的PcSPM算法。该方法能在多种尺度上提取图像金字塔直方图主成分,可减少特征冗余,并将其应用于图像分类。实验表明,该方法能够有效去除图像特征中的冗余,提高了图像分类的精度。 Effective elimination of redundancy in image features is a major content in the research field of image classification.Based on the Spatial Pyramid Matching(SPM)image classification algorithm,and by integrating with principal component analysis(PCA)method,this paper proposed a new PcSPM algorithm.It is able to extract pyramid histogram principal components of image on multiple levels,and reduce feature redundancy and be applied in image classification.Experiment shows that this method is capable of effectively eliminating redundancy in image features and improving the accuracy of image classification.
作者 李青彦 彭进业 LI Qingyan;PENG Jinye(School of Electronics and Information,Northwestern Ploytechnical University,Xi'an 710072;School of Information and Technology,Northwest University,Xi'an 710127)
出处 《微型电脑应用》 2020年第2期17-19,共3页 Microcomputer Applications
关键词 图像分类 SPM 特征降维 主成分分析 词袋算法 Image classification SPM Feature dimensionality reduction Principal component analysis Bag of Word(BoW)
作者简介 李青彦(1982-),男,菏泽人,博士研究生,研究领域:数字图像仿真处理;彭进业(1964-),男,娄底市人,教授,博士生导师,研究领域:图像处理与模式识别。
  • 相关文献

参考文献3

二级参考文献36

  • 1Sivic J, Zisserman A. Video Google: A Text Retrieval App- roach to Object Matching in Videos[C]//Proc. of the 9th IEEE International Conference on Computer Vision. Madison, USA: IEEE Press, 2003.
  • 2Lazebnik S, Schmid C, Ponce J. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories[C]//Proc. of Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Press, 2006.
  • 3Yang Jianchao, Yu Kai, Gong Yihong, et al. Linear Spatial Pyramid Matching Using Sparse Coding for Image Classification[C]//Proc. of Conference on Computer Vision and Pattern Recognition. Miami, USA: MIT Press, 2009.
  • 4Gao Shenghua, Tsang I W, Chia L, et al. Local Features Are Not Lonely-Laplacian Sparse Coding for Image Assifica- tion[C]//Proc. of Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE Press, 2010.
  • 5Hoyer P O. Non-negative Sparse Coding[C]//Proc. of NIPS’02. Denver, USA: MIT Press, 2002.
  • 6Liu Haifeng, Wu Zhaohui, Li Xulong, et al. Constraint Non Negative Matrix Factorization for Image Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 13(4): 1299-1311.
  • 7Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-217.
  • 8Shastri B J, Levine M D. Face Recognition Using Localized Features Based on Non-negative Sparse Coding[J]. Machine Vision and Applications, 2007, 18(2): 107-122.
  • 9von Luxburg U. A Tutorial on Spectral Clustering[J]. Statistics and Computing, 2007, 17(4): 231-238.
  • 10Lee D D, Seung H S. Algorithms for Non-negative Matrix Factorization[C]//Proc. of Conference on Computer Vision and Pattern Recognition. Kauai, USA: IEEE Press, 2001.

共引文献8

同被引文献24

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部