期刊文献+

卷积神经网络的人脸识别

Facial Recognition Based On Convolutional Neural Network
在线阅读 下载PDF
导出
摘要 本文深入研究了卷积神经网络和逻辑回归分类器,利用两者的优点提出了一种混合系统,将卷积神经网络和Logistic回归分类器进行串联,该模型进行了两步学习,首先训练卷积神经网络识别面部图像,接着用逻辑回归分类器对上一步训练的特征进行二次分类,同时将使用卷积神经网络的特征提取应用于规范化数据。最后人脸数据库中进行训练和测试,通过实验证明本文算法可以在更短的时间内提高分类率,在不同的光照下也能准确识别人脸表情,具有较好的稳定性和鲁棒性。 In this paper,the convolution neural network and the logic regression classifier are studied deeply,and a hybrid system is proposed by using the advantages of both.The convolution neural network and the logistic regression classifier are connected in series.The model is studied in two steps.First,the convolution neural network is trained to recognize the face image,then the logic regression classifier is used to classify the features trained in the previous step At the same time,the feature extraction using convolutional neural network is applied to the normalized data.Finally,the face database is trained and tested.The experimental results show that the algorithm can improve the classification rate in a shorter time,and can accurately recognize the face under different light conditions,with good stability and robustness.
作者 王偏 陈恳 WANG Pian;CHEN Ken(Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo 315211,China)
出处 《无线通信技术》 2020年第1期38-42,共5页 Wireless Communication Technology
关键词 卷积神经网络 Logistic回归分类器 机器学习算法 反向传播和人脸识别 convolutional neural network logistic regression classifier(LRC) machine learning algorithm back propagation and facial recognition
作者简介 王偏,女,1992年生,硕士,研究方向为人脸识别,宁波大学信息科学与工程学院。
  • 相关文献

参考文献9

二级参考文献42

  • 1李武军,王崇骏,张炜,陈世福.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66. 被引量:108
  • 2MI Hong,GUO Ye,LI Wen-liang,Qu Nan,DOU Ying,REN Yu-qiu,REN Yu-lin.Application of Short-wave Near-infrared Reflectance Spectroscopy in Controlling Extract of Fructus Cnidii Using Supercritical Carbon Dioxide[J].Chemical Research in Chinese Universities,2007,23(1):116-119. 被引量:1
  • 3[4]BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5-32.
  • 4[5]SCHAPIRE R E.The strength of weak learnability[J].Machine Learning,1990,5(2):197-227.
  • 5[6]SCHAPIRE R E.A brief introduction to boosting[C]// Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence.Stockholm,1999:1401-1406.
  • 6[7]FABRIZIO S,ALESSAMDRO S,NICOLA V.An improved boosting algorithm and its application[C]// Proceedings of the 2000ACM CIKM International Conference on Information and Knowledge Management.Mclean,VA,USA,2000:78-85.
  • 7[8]HAN Jiawei,KAMBER M.Data mining:concepts and techniques[M].北京:机械工业出版社,2001.
  • 8[10]MANJUNATH B S,OHM J R,VASUDENVAN V V,et al.Color and texture descriptors[J].IEEE Trans on CSVT,2001,11(6):703-715.
  • 9章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 10Maja Pantic, Leon J. M .Rothkrantz. Automatic Analysis of Facial Expressions: The State of the Art, IEEE Trans. On Pattern Analysis and Machine Intelligence, 2000 ; 2 ( 12 ).

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部