期刊文献+

Reservoir geological modeling and significance of Cambrian Xiaoerblak Formation in Keping outcrop area, Tarim Basin, NW China 被引量:2

在线阅读 下载PDF
导出
摘要 Take the Cambrian Xiaoerblak Formation in the Keping(Kalpin) outcrop area as an example, a 28 km reservoir scale geological model was built based on description of 7 profiles, observation of more than 1000 thin sections, petrophysical analysis of 556 samples and many geochemical tests. The Xiaoerblak Formation, 158–178 m thick, is divided into three members and 5 submembers, and is composed of laminated microbialite dolomite(LMD), thrombolite dolomite(TD), foamy-stromatolite dolomite(FSD), oncolite dolomite(OD), grain dolomite(GD)/crystalline dolomite with grain ghost and micritic dolomite(MD)/argillaceous dolomite. The petrology features show that its sediment sequence is micro-organism layer – microbial mound/shoal – tidal flat in carbonate ramp background from bottom up. The reservoir has 5 types of pores, namely, framework pore, dissolved vug, intergranular and intragranular dissolved pore and intercrystalline dissolved pore, as main reservoir space. It is found that the development of pore has high lithofacies selectivity, FSD has the highest average porosity, TD, OD and GD come second. The reservoir is pore-vug reservoir with medium-high porosity and medium-low permeability. The dolomite of Xiaoerblak Formation was formed in para-syngenetic to early diagenetic stage through dolomitization caused by seawater. The reservoir development is jointly controlled by sedimentary facies, micro-organism type, high frequency sequence interface and early dolomitization. The classⅠand Ⅱ reservoirs, with an average thickness of 41.2 m and average reservoir-stratum ratio of about 25.6%, have significant potential. It is predicted that the microbial mounds and shoals in the middle ramp around the ancient uplift are the favorable zones for reservoir development.
出处 《Petroleum Exploration and Development》 2020年第3期536-547,共12页 石油勘探与开发(英文版)
基金 Supported by the China National Science and Technology Major Project of(2016ZX05004-002) Petro China Science and Technology Major Project(2019B-0405 and 2018A-0103)
作者简介 Corresponding author:SHEN Anjiang,E-mail:shenaj_hz@petrochina.com.cn
  • 相关文献

参考文献29

二级参考文献586

共引文献1139

同被引文献39

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部