摘要
为研究更适用于非线性计算的影响矩阵构建方法,以一座主跨280 m和一座主跨1176 m的两塔三跨斜拉桥为背景,考虑几何非线性的影响,分别采用“索力控制法”和“索长控制法”2种影响矩阵构建方法进行斜拉索索力优化,对比2种影响矩阵法求解结构响应和反算索力增量的计算精度,并研究2种影响矩阵法的计算效率和适用性。结果表明:斜拉桥待调目标与基准状态的差异越大,非线性效应越显著,影响矩阵线性叠加计算值与非线性有限元计算值之间的相对误差越大;对于主梁位移计算,随着斜拉桥跨度的增加,“索力控制法”始终保持很高精度,“索长控制法”精度逐渐降低,而对于塔底弯矩计算,2种方法的计算误差均随着目标增量的增大而增大;对于超大跨度斜拉桥,“索力控制法”的主调因素为目标索力,对目标状态的控制效果更优,“索长控制法”存在索力的相互影响,对非线性的适用性相对较差;实际运用中,应根据工程实际需要,结合有限元软件的计算功能以及优化算法,综合选择影响矩阵的构建方法。
This paper studies the methods to construct influence matrices that are suitable for nonlinear calculation.Two two-pylon,three-span cable-stayed bridges with main spans of 280 m and 1176 m,respectively,are used as cases.Considering the influence of geometrical nonlinearity,the"stay cable force control method"and the"cable length control method"were taken to construct influence matrices to optimize the stay cable forces,the calculation accuracy of the two methods was compared in terms of the structural responses calculation and reverse calculation of stay cable force increments,and the calculation efficiency and applicability of the two methods were studied.It is shown that the greater the difference between the target and basic states of the cable-stayed bridge,the more significant the nonlinear effect,and the greater difference between the linear superposition calculations of the influence matrices and the nonlinear finite element calculations as well.To calculate the displacements of main girder,the"stay cable force control method"keeps sound calculation accuracy as the increase of span length,while the calculation accuracy of the"cable length control method"is declined.To calculate the pylon-bottom bending moment,the calculation errors of the two methods rise as the target increments increase.For the cable-stayed bridge with very long spans,the"stay cable force control method"gives prominence to the target stay cable forces,and better controls the target condition of the stay cables,while the"cable length control method"does not suit well the nonlinear calculation.In the real engineering practice,it is suggested to select the construction method of influence matrices comprehensively considering the calculation capacity of finite element software and optimized calculation method.
作者
韩若愚
苑仁安
HAN Ruoyu;YUAN Renan(China Railway Major Bridge Reconnaissance&Design Institute Co.,Ltd.,Wuhan 430056,China)
出处
《桥梁建设》
EI
CSCD
北大核心
2023年第S02期97-103,共7页
Bridge Construction
基金
国家重点研发计划项目(2022YFB2602903)
中国中铁股份有限公司科技研究开发计划项目(2021-专项-01,2022-专项-01)
关键词
斜拉桥
索力优化
影响矩阵
几何非线性
索力控制法
索长控制法
有限元法
cable-stayed bridge
stay cable force optimization
influence matrix
geometrical nonlinearity
cable force control method
cable length control method
finite element method
作者简介
韩若愚,1992—,男,工程师,2014年毕业于东南大学土木工程专业,工学学士,2017年毕业于同济大学建筑与土木工程专业,工程硕士。研究方向:桥梁结构设计,E-mail:hanruoyu1992@qq.com;苑仁安,1987—,男,高级工程师,2010年毕业于长沙理工大学土木工程专业,工学学士,2013年毕业于西南交通大学桥梁与隧道工程专业,工学硕士,2021年毕业于西南交通大学桥梁与隧道工程专业,工学博士。研究方向:大跨度桥梁施工控制理论,E-mail:627948171@qq.com