期刊文献+

基于多尺度细节补偿的滚动引导滤波去雾

Image defogging based on multi-scale detail compensation by rolling guided filtering
在线阅读 下载PDF
导出
摘要 针对雾霾天气下拍摄的图像对比度低、细节信息丢失、严重影响户外视觉系统分析工作等问题,利用基于暗原色先验的引导滤波算法对雾天图像进行初步复原,并通过改进经典的伽马变换和滚动引导滤波算法分别对图像对比度的增强和多尺度细节补偿问题开展研究。结果表明:所提方法不仅能够更好地复原场景结构信息、自适应提高图像对比度,同时还能够有效丰富图像多尺度纹理细节,主观视觉效果与客观评价指标验证了算法的有效性。 Outdoor images captured in smoggy weather are prone to have low contrast and lose details,which adversely affects outdoor visual system analysis.To solve these problems,a guided filtering algorithm based on dark channel prior was used to restore the initial defogging image.Furthermore,a study was conducted on enhancing image contrast and multi-scale detail compensation by the improved classical gamma transform and rolling-guided filtering algorithm,respectively.The experimental results show that the proposed method can recover the scene structure information,improve the image contrast adaptively,and enrich the multi-scale texture details effectively.The effectiveness of the algorithm is verified by subjective visual effect and objective evaluation index.
作者 陈耀欣 翟艺书 高智慧 刘月圆 CHEN Yaoxin;ZHAI Yishu;GAO Zhihui;LIU Yueyuan(School of Science,Tianjin University of Technology and Education,Tianjin 300222,China)
出处 《天津职业技术师范大学学报》 2023年第4期42-48,共7页 Journal of Tianjin University of Technology and Education
关键词 图像去雾 引导滤波 改进的伽马变换 滚动引导滤波 多尺度细节 image defogging guided filtering improved gamma transform rolling guided filtering multi-scale detail
作者简介 陈耀欣(1999—),女,硕士研究生,研究方向为图像去雾;通信作者:翟艺书(1979—),女,副教授,硕士生导师,研究方向为图像增强、图像去雾,51762041@qq.com.
  • 相关文献

参考文献8

二级参考文献52

  • 1Wang Zhou, Bovik A C, Lu Ligang. Why is Image Quality Assessment So Difficult[C]//Proc. of IEEE InternationalConference on Acoustics, Speech, and Signal Processing. [S. 1.]: IEEE Press, 2002: 3313-3316.
  • 2Wang Zhou, Bovik A C, Sheikh H R, et al. Image Quality Assessment: from Error Visibility to Structural Similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 3Chen Guanhao, Yang Chunling, Po Laiman, et al. Edge-based Structural Similarity for Image Quality Assessment[C]//Proc. ofIEEE International Conference on Acoustics, Speech, and Signal Processing. [S. 1.]: IEEE Press, 2006: 933-936.
  • 4Sheikh H R, Wang Zhou, Bovik A C, et al. Image and Video Quality Assessment Research at LIVE[EB/OL]. (2010-09-10). http://live.ece.utexas.edu/research/quality.
  • 5John P Oakley, Brenda L Satherley. Improving image qual- ity in poor visibility conditions using a physical model for contrast degradation [ J ]. IEEE Transactions on Image Processing, 1998,7 (2) : 167 - 179.
  • 6S G Narasimhan, S K Nayar. Interactive deweathering of an image using physical models [ C ]//Workshop on Col- or and Photometric Methods in Computer Vision, 2003,1.
  • 7He K, Sun J, Tang X. Single image haze removal usingdark channel prior[ J]. CVPR,2009.
  • 8Brainard D H, Wandell B A. Analysis of the retinex theory of color vision[J]. Journal of Optical Society of America, 1986,3(10) :1651 - 1661.
  • 9Land E H, Mccann J J. Lightness and retinex theory [ J ]. Journal of the Optical Society of America, 1971,61 ( 1 ) : 1 -11.
  • 10Jobson D J, Rrahman Z, Woodell G A. Properties and per- formance of a center/surround retinex [ J ]. IEEE Trans. Image Processing, 1997,6 ( 3 ) :451 - 462.

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部