期刊文献+

基于循环神经网络的盾构隧道引发地面最大沉降预测 被引量:59

Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network
在线阅读 下载PDF
导出
摘要 伴随着计算机技术的快速发展,机器学习等新兴算法正在被越来越多地运用于预测隧道掘进引发的地面最大沉降。在隧道施工过程中,由盾构机和地面监测点位采集的数据具有很强的序列化特征,而传统的机器学习算法对序列数据的处理存在一定的局限性。循环神经网络(RNN)具有极强的对时序型数据的处理能力,在视频识别、语音翻译等领域有着广泛的应用。采用两种RNN模型(LSTM、GRU)和传统的BP神经网络模型,以地质参数、几何参数和盾构机参数作为输入,对隧道施工过程中引发的地面最大沉降进行预测分析。结果显示,RNN对隧道沉降的预测结果优于传统的BP神经网络模型,并且RNN在连续未知区段的预测结果比BPNN更加稳定。 With the rapid development of computer technology,emerging algorithms such as machine learning are being increasingly used to predict the maximum ground settlement induced by tunneling.In the process of tunnel construction,the data collected by shield machines and ground monitoring points have strong serialization characteristics,and the traditional machine learning algorithm has certain limitations on the processing of such data.Recurrent neural network(RNN)has extremely strong ability to process time-series data,and has a wide range of applications in video recognition,speech translation and other fields.Taking geological parameters,geometric parameters and shield machine parameters as inputs,the prediction efficiency of two RNN models(LSTM,GRU)and a traditional BPNN model on the maximum ground settlement caused by the tunneling was investigated.The results show that the prediction result of RNN for tunnel settlement is better than that of traditional BPNN model,and the prediction result of RNN in continuous unknown sections is more stable than that of BPNN.
作者 李洛宾 龚晓南 甘晓露 程康 侯永茂 Li Luobin;Gong Xiaonan;Gan Xiaolu;Cheng Kang;Hou Yongmao(College of Civil Engineering and Architecture,Zhejiang University,Hangzhou 310058,China;Research Center of Coastal and Urban Geotechnical Engineering,Zhejiang University,Hangzhou 310058,China;Engineering Research Center of Urban Underground Development,Zhejiang University,Hangzhou 310058,China;Shanghai tunnel Engineering Co.,Ltd.,Shanghai 200082,China)
出处 《土木工程学报》 EI CSCD 北大核心 2020年第S01期13-19,共7页 China Civil Engineering Journal
基金 国家自然科学基金资助(5177858575) 浙江省重点研发计划(2019C03103)
关键词 沉降预测 盾构隧道 循环神经网络 机器学习 settlement prediction shield tunneling recurrent neural network machine learning
作者简介 李洛宾(1996—),男,硕士研究生,主要从事盾构隧道与既有构筑物相互影响方面的研究,E-mail:liluobin@foxmail.com;龚晓南(1944—),男,博士,中国工程院院士。主要从事土力学、地基处理、基坑工程、隧道工程方面的研究;甘晓露(1994—),男,博士研究生。主要从事盾构隧道与既有构筑物相互影响方面的研究;程康(1993—),男,博士研究生。主要从事基坑工程、隧道工程方面的研究;侯永茂(1981—),男,博士,高级工程师。主要从事隧道工程、基坑工程方面的研究。
  • 相关文献

参考文献3

二级参考文献44

  • 1魏纲,徐日庆.软土隧道盾构法施工引起的纵向地面变形预测[J].岩土工程学报,2005,27(9):1077-1081. 被引量:94
  • 2PECK R B. Deep excavations and tunneling in soft ground[C]// Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico:[s.n.],1969:225-290.
  • 3SAGASETA C. Analysis of undrained soil deformation due to ground loss[J]. Géotechnique,1987,37(3):301-320.
  • 4VERRUIJT A,BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic halfplane[J]. Géotechnique,1996,46(4):753-756.
  • 5LOGANATHAN N,POULOS H G. Analytical prediction for tunneling-induced ground movements in clays[J].Journal of Geotechnical and Geoenvironmental Engineering.1998,124(9):846-856.
  • 6CHI,S Y,CHERN J C,LIN C C. Optimized back-analysis for tunneling-induced ground movement using equivalent ground loss model[J].Tunnelling and Underground Space Technology.2001,16(3):159-165.
  • 7PARK K H. Analytical solution for tunnelling-induced ground movement in clays[J].Tunnelling and Underground Space Technology.2005,20(3):249-261.
  • 8MINDLIN R D. Force at a point in the interior of a semi-infinite solid[J]. Journal of Applied Physics,1936,7(5):195-202.
  • 9POULOS H G,DAVIS E H. Elastic solutions for soil and rock mechanics[M]. New York:John Wiley and Sons,Inc.,1974:16-20.
  • 10HASHIMOTO T,NAGAYA J,KONDA T. Prediction of ground deformation due to shield excavation in clayey soils[J]. Soils and Foundations,1999,39(3):53-61.

共引文献123

同被引文献743

引证文献59

二级引证文献193

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部