期刊文献+

基于矩阵变换和可调节环的部分重复码构造 被引量:2

Construction of Fractional Repetition Codes Based on Matrix Transformation and Adjustable Ring
在线阅读 下载PDF
导出
摘要 目前在构造部分重复码(Fractional Repetition Codes,FRC)的研究方法中发现,大多数是基于同构的分布式存储系统,但实际的存储系统往往需要满足异构的特性.为此,本文提出了两种构造异构FRC的方法,一种是基于矩阵变换构造的异构FRC,该方法用于构造重复度为2,节点存储容量异构的FRC,相比用正则图构造的同构FRC,具有算法计算复杂度低,更符合现实存储系统的优点;另外,本文还提出了运用可调节环构造FRC的方法,用于构造重复度为2或3的FRC,即可得到节点存储容量同构的FRC也可得到异构的FRC.与现有的FRC对比分析,发现本文构造的FRC在节点存储容量上具有异构的特点,修复局部性好,同时构造算法运算复杂度低,可以大范围的选择参数,构造结构简单直观. According to the current method of constructing Fractional Repetition Codes(FRC),it is found that most of them are distributed storage systems based on isomorphism,but the actual storage systems often need to satisfy the characteristics of heterogeneity.To this end,this study proposes two methods for constructing heterogeneous FRC.One is a heterogeneous FRC constructed based on matrix transformation.This method is used to construct an FRC with a repeatability of 2 and a heterogeneous storage capacity of nodes.Compared with the existing isomorphic FRC constructed by regular graphs,it has the advantages of lower computational complexity and more in line with the real storage system.In addition,this study also proposes a method of constructing FRC using adjustable rings,which FRC is constructed with a repeatability of 2 or 3,which can obtain the FRC of the node storage capacity is isomorphic,and can also get the heterogeneous FRC.Compared with the existing FRC,it is found that the FRC constructed in this study has heterogeneous characteristics in node storage capacity,good repair locality,and low computational complexity of the construction algorithm.It can select parameters in a wide range and the construction structure is simple and intuitive.
作者 沈克勤 孙伟 何亚锦 张鑫楠 SHEN Ke-Qin;SUN Wei;HE Ya-Jin;ZHANG Xin-Nan(School of Information Engineering,Chang’an University,Xi’an 710064,China)
出处 《计算机系统应用》 2020年第12期187-193,共7页 Computer Systems & Applications
基金 陕西省自然科学基金(2019JM-386)
关键词 分布式存储系统 部分重复码 矩阵变换 节点修复 distributed storage system fractional repetition codes matrix transformation ring node repair
作者简介 通讯作者:沈克勤,E-mail:17862001617@163.com
  • 相关文献

参考文献2

二级参考文献15

  • 1周松,王意洁.EXPyramid:一种灵活的基于阵列结构的高容错低修复成本编码方案[J].计算机研究与发展,2011,48(S1):30-36. 被引量:5
  • 2GHEMAWAT S, GOBIOFF H, LEUNG S. The Google file system[A].The 19th ACM Symposium on Operating Systems PrincipIesfC]. LakeGeorge’ New York, USA’ 2003. 29-43.
  • 3DIMAKIS A Q RAMCHANDRAN K, WU Y, et al. A survey onnetwork codes for distributed storage[J]. Proceedings of the IEEE,2011,99(3): 476-489.
  • 4STEVEN J,MURDOCH, PIOTR ZIELINSKI. Sampled traffic analy-sis by intemet-exchange-level adversaries[A]. Proceedings of the 7thInternational Conference on Privacy Enhancing Technologies[C].2007.167-183.
  • 5DIMAKIS A Q GODFREY P B, WU Y, et al. Network coding fordistributed storage systems[J]. IEEE Transactions on InformationTheory, 2010, 56(9): 4539-4551.
  • 6RASHMIK V, SHAH N B’ KUMAR P V. Optimal exact-regeneratingcodes for distributed storage at the MSR and MBR points via a prod-uct-matrix construction[J], IEEE Transactions on Information Theory,2011,57(8): 5227-5239.
  • 7RASHMI K V,SHAH N B, KUMAR P V,et al. Explicit constructionof optimal exact regenerating codes for distributed storage[A]. The47th Annual Allerton Conference on Communication, Control, andComputing[C]. Monticello,IL, USA,2009.1243-1249.
  • 8RASHMI K V,SHAH N B,KUMAR P V,et al Explicit and optimalexact-regenerating codes for the minimum-bandwidth point in distrib-uted storagefA]. IEEE International Symposium on Information Tlie-ory Proceedings[C]. Austin, TX, USA, 2010. 1938-1942.
  • 9VENKATESAN V. Fast Rebuilds in Distributed Storage SystemsUsing Network Coding[R]. Zurich Research Laboratory, IBM Re-search GmbH, Zurich, 2009.
  • 10ROUAYHEB S E,RAMCHANDRAN K. Fractional repetition codesfor repair in distributed storage systems[A]. The 48th Annual AllertonConference on Communication, Control, and ComputingfC]. Allerton,IL,USA, 2010. 1510-1517.

共引文献57

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部