期刊文献+

基于改进对抗生成网络模型的肺气管图像分割 被引量:2

Bronchia Image Segmentation Based on the Improved Generative Adversarial Network Model
在线阅读 下载PDF
导出
摘要 目的:为了提高肺部疾病的临床诊断准确率及其手术成功率,需要对肺气管的影像进行准确的分割。方法:提出一种全新的针对肺气管图像的三维图像分割算法,将深度学习中的对抗生成网络结构(GAN)、密集连接网络模型(Dense Net)以及多尺度连接(Multi Scale)结构应用到临床三维图像的分割中。结果:该方法可以从读取数据块中做到像素级的分割,根据相对坐标位置对分割结果进行投票,结合最大联通分量后处理办法,分割出精确到第四支的气管,算法在测试数据上的分割结果获得交并比(IOU)超过91.4%的准确率。结论:基于对抗生成网络的图像分割算法,无需人工交互即可获得形态学结构复杂(肺气管)的三维目标,能提高肺部疾病的临床诊断准确率和手术成功率。 Objective:It is necessary to segment bronchia image accurately to improve the clinical diagnostic accuracy and surgical success rate of pulmonary diseases.Methods:A new three-dimensional image segmentation algorithm for bronchia images is proposed,and the generative adversarial network structure(GAN),dense connection network model(Dense Net)and multi-scale connection(Multi Scale)structure in deep learning are applied to three-dimensional image segmentation.Results:The method can achieve pixel-level segmentation from the read data block,vote on the segmentation results according to the relative coordinate position,and combine the maximum connectivity component post-processing method to segment the trachea accurate to the fourth branch.The algorithm is testing the data in the above,the segmentation result have more than 91.4%cross-combination accuracy.Conclusion:The image segmentation algorithm based on generative adversarial network can obtain complex morphological structures(bronchia)threedimensional targets without human interaction,which can improve the clinical diagnostic accuracy and surgical success rate of pulmonary diseases.
作者 王继伟 王弘轩 黄绍辉 王博亮 陈岗 郭明 WANG Ji-wei;WANG Hong-xuan;HUANG Shao-hui
出处 《中国数字医学》 2021年第10期93-97,共5页 China Digital Medicine
基金 国家自然科学基金(编号:61271336) 厦门市科技计划(编号:3502Z20209154).
关键词 深度学习 对抗生成网络模型 肺气管图像分割 deep learning generative adversarial network model bronchia image segmentation
作者简介 通信作者:郭明,陆军第七十三集团军医院心胸外科,361003,福建省厦门市思明区文园路92-96号,E-mail:13358378777@163.com
  • 相关文献

参考文献5

二级参考文献48

  • 1Suzuki K, Kohlbrenner R, Epstein M L, et al. Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms [J]. Medical Physics (S0094-2405), 2010, 37(5): 2159-2166.
  • 2Gletsos M, Mougiakakou S G, Matsopoulos G K, et al. A computer-aided diagnostic system to characterize CT focal liver lesions: Design and optimization of a neural network classifier [J]. IEEE Transactions on Information Technology in Biomedical (S1089-7771), 2003, 7(3): 153-162.
  • 3Feuerstein M, Mussack T, Heining S M, Navab N. Intraoperative laparoscope augmentation for port placement and resection planning in minimally invasive liver resection [J]. IEEE Transactions on Medical Imaging (S0278-0062), 2008, 27(3): 355-369.
  • 4Song X, Cheng M, Wang B, et aL Preoperative Planning for Liver Surgery based on CT Images [J]. Advances in lntbrmation Sciences and Service Sciences (S 1976-3700), 2012, 4( 11 ): 54-60.
  • 5Lee M, Cho W, Kim S, et al. Segmentation of interest region in medical volume images using geometric deformable model [J]. Computers in Biology and Medicine (S0010-4825), 2012, 42(5): 523-537.
  • 6Linguraru M G, Pura J A, Pamulapati V, Summers R M. Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT [J]. Medical Image Analysis (S 1361-8415), 2012, 16(4): 904-914.
  • 7Heimann T, van Ginneken B, Styner M A, et al. Comparison and evaluation of methods for liver segmentation fi-om CT datasets [J]. IEEE Transactions on Medical Imaging (S0278-0062), 2009, 28(8): 1251-1265.
  • 8Li C, Huang R, Ding Z, et al. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI [J]. IEEE Transaction on Image Processing (S1057-7149), 2011,20 (7): 2007-2016.
  • 9Li C, Xu C, Gui C, Fox M D. Distance regularized level set evolution and its application to image segmentation [J]. IEEE Transaction on Image Processing (S1057-7149), 2010, 19(12): 3243-3254.
  • 10Chen X, Udupa J K, Bagci U, et aL Medical image segmentation by combining graph cuts and oriented active appearance models [J]. IEEE Transaction on Image Processing (S 1057-7149), 2012, 21 (4): 2035-2046.

共引文献6

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部