期刊文献+

基于PJVS的交流量子电压比例研究 被引量:14

Research on AC quantum voltage ratio based on PJVS
在线阅读 下载PDF
导出
摘要 可编程约瑟夫森量子电压基准(PJVS)在电学计量中的应用,完成了电压单位伏特由实物基准到自然基准的过渡,具有高准确性、高稳定性的特点。基于双路量子电压信号,可构建具有量子精度的交流比例,实现任意交流比例高精度的量子复现,从而替代传统交流比例技术。通过驱动SNS型双路约瑟夫森结阵,能够同时合成两路幅值精确且相位可调的量子电压。采用双通道差分采样技术减小了台阶间过渡过程对量子电压幅值恢复的影响,结合通道换臂技术实现量子电压比例的高精度测量,交流量子电压比例测量标准不确定度为0.09μV/V,交流量子电压比例输出精度优于0.05μV/V。通过与传统感应分压器(IVD)比较测量,验证了交流量子电压比例的准确性。最后讨论了交流量子电压比例技术在功率计量以及交流阻抗电桥两个电磁计量领域中的应用。 The application of programmable Josephson quantum voltage standard(PJVS) in electrical measurement completes the transition from physical reference standard to natural reference standard of voltage unit volt, which has the characteristics of high accuracy and high stability. Based on the double channel quantum voltage signals, the ac ratio with quantum precision can be constructed to realize the high-precision quantum reproduction of arbitrary ac voltage ratio, which can replace the traditional ac ratio technology. Through driving the SNS type double channel Josephson junction array, double quantum voltages with precise amplitude and adjustable phase can be synthesized simultaneously. The two-channel differential sampling technique is adopted to reduce the influence of step transition process on the amplitude recovery of quantum voltage, and combining the channel arm-changing technique the high-precision measurement of quantum voltage ratio is realized. The standard uncertainty of the ac quantum voltage ratio measurement is 0.09 μV/V, and the ac quantum voltage ratio output accuracy is better than 0.05 μV/V. The accuracy of the ac quantum voltage ratio was verified through comparison measurement with the conventional inductive voltage divider(IVD). Finally, the applications of the ac quantum voltage ratio technology in two electromagnetic metrology fields of power measurement and ac impedance bridge are discussed.
作者 周天地 贾正森 杨雁 石照民 徐熙彤 Zhou Tiandi;Jia Zhengsen;Yang Yan;Shi Zhaomin;Xu Xitong(Division of Electricity and Magnetism,National Institute of Metrology,China,Beijing 100029,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第2期85-92,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(51877202)项目资助.
关键词 可编程约瑟夫森电压基准 量子电压 交流比例 差分采样 功率计量 阻抗电桥 programmable Josephson voltage standard(PJVS) quantum voltage AC ratio differential sampling power metrology impedance bridge
作者简介 周天地,2013年于中国计量大学获得学士学位,现为中国计量科学研究院硕士研究生,主要研究方向为约瑟夫森量子电压驱动系统及交流量子电压比例技术研究。E-mail:531201908@qq.com;通信作者:贾正森,分别在2010年和2015年于吉林大学获得学士学位和博士学位,现为中国计量科学研究院副研究员,主要研究方向为可编程约瑟夫森量子电压和基于量子电压的交流电压和功率测量。E-mail:jiazs@nim.ac.cn
  • 相关文献

参考文献5

二级参考文献48

  • 1高原,李红晖,沈雪槎.我国的1V及10V约瑟夫森量子电压基准装置[J].现代测量与实验室管理,2005,13(3):3-6. 被引量:13
  • 2边少锋,纪兵.重力梯度仪的发展及其应用[J].地球物理学进展,2006,21(2):660-664. 被引量:27
  • 3HAMILTON CLARK A. Josephson voltage standards[J].Review of Scientific Instruments, 2000,71(10):3611-3623.
  • 4KOHLMANN J, MLLER F, BEHR R, et al. Development of josephson junction series arrays for synthesis of AC voltages and arbitrary waveforms [J].Journal of Physics: Conference Series, 2006, 43: 1385-1388.
  • 5BENZ S P, HAMILTON C A, BURROUGHS C J, et al. Pulse-driven josephson digital/Analog converter[J].IEEE Transactions on Applied Superconductivity, 1998, 8(2): 42-47.
  • 6MALTRAS F, GOURNAY P, ROBINSON IAN A, et al. Synthesis of precision waveforms using a SINIS josephson junction array[J].IEEE Transactions on Instrumentation and Measurement, 2007, 56(2): 495-499.
  • 7A.巴罗尼, G.帕特诺著. 约瑟夫森效应原理和应用[M].崔广霁, 孟小凡译. 北京:中国计量出版社, 1988: 6-10.
  • 8BURROUGHS C J, BENZ SAMUEL P, Thermoelectric transfer difference of thermal converters measured with a josephson source [J].IEEE Transactions on Instrumentation and Measurement, 1999, 48(2): 282-284.
  • 9BEHR R, KOHLMANN J, JANSSEN JAN-THEODOR B M, et al. Analysis of different measurement setups for a programmable josephson voltage standard[J].IEEE Transactions on Instrumentation and Measurement, 2003, 52(2): 524-528.
  • 10BEHR R, WILLIAMS J M, PATEL P, et al. Synthesis of precision waveforms using a SINIS josephson junction array[J].IEEE Transactions on Instrumentation and Measurement, 2005, 54(2): 612-615.

共引文献39

同被引文献125

引证文献14

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部