期刊文献+

共享单车时空特征分析——以上海市长宁区为例

Temporal-spatial Features of Bicycle-sharing:A case of Changning District in Shanghai
在线阅读 下载PDF
导出
摘要 无桩式共享单车系统作为城市慢行交通的重要组成部分,为居民高效、绿色地解决了“最后一公里”出行问题。本研究基于上海市共享单车历史订单数据,以长宁区为范围,利用Python和ArcGIS工具对共享单车数据进行时空间特征分析。研究发现,共享单车在时间层面呈现明显的早晚高峰特征,工作日早高峰为7:00—9:00,非工作日是10:00—12:00,晚高峰均为17:00—19:00;工作日单车平均使用频次与非工作日相接近;空间层面上发现75%以上的用户骑行距离都在1.3 km范围内。对起讫点进行核密度分析发现,用地布局对于共享单车的使用具有较大影响。地铁枢纽、商业用地等区域周围共享单车的借还量核密度分布一致;东部区域的共享单车使用量密度明显大于西部区域。 As an important part of urban slow traffic,dockless bicycle sharing system solves the"last-mile"travel problem for residents efficiently and greenly.This study takes Changning District of Shanghai as the scope,and uses Python and ArcGIS tools to analyze the temporal-spatial features of shared bicycle data based on the historical order data of shared bicycle in Shanghai.It was found that shared bicycles show obvious morning and evening peak characteristics at the time level,with the morning peak being 7:00–9:00 on weekdays,10:00–12:00 on non-workdays,and the evening peak both being 17:00–19:00;the average frequency of bicycle use on weekdays is close to that on non-workdays;and it was found at the spatial level that more than 75%of the users'cycling distances are within the range of 1.3 km.Kernel density analysis of the starting and ending points found that the land use layout has a greater impact on the use of shared bicycles.The kernel density distribution of shared bicycle borrowing and returning around areas such as subway hubs and commercial sites is consistent;the density of shared bicycle usage in the eastern region is significantly greater than that in the western region.
作者 刘灿齐 曾俊盛 LIU Canqi;ZENG Junsheng(Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University,Shanghai 201804,China)
出处 《交通与运输》 2024年第S01期194-198,共5页 Traffic & Transportation
关键词 慢行交通 共享单车 时空特征 长宁区 Slow traffic Bicycle sharing Temporal-spatial features Changing district
作者简介 第一作者:刘灿齐(1964-),男,湖南浏阳人,博士,副教授,主要研究方向:交通规划与管理。
  • 相关文献

参考文献11

二级参考文献68

  • 1GARCIA-PALOMARES J C, GUTIERREZ J, LATORRE M. Optimizing the location of sta- tions in bike-sharing programs: a GIS approach [J]. Applied Geography, 2012(35): 235-246.
  • 2杭州金通公共自行车科技股份有限公司.杭州跻身“全球最棒公共自行车服务城市”行列[N/OL].http://3tkjbikecom/newsS1652.aspx.
  • 3MIDGLEY P. Bicycle sharing schemes: enhanc- ing sustainable mobility in urban areas[C]. De- partment of Economic and Social Affairs, UN. CSD 19/2011/BP8.
  • 4TRAN T D, OVTRACHT N, ARCIER B F. Modeling bike sharing system using built envi- ronment factors[C]. Procedia CIRP. 2{)15, 30: 293-298.
  • 5VOGEL P, G1KE1SER T, MATTFELD 1) C. Understanding bike-sharing systems using data mining: exploring activity patterns[J]. Procedia Social and Behavioral Sciences, 2011(20): 514 - 523.
  • 6WANG X Z, LINDSEY G, SCHONER J E, HARRISON A. Modeling bike share station ac- tivity: effects of nearby businesses and jobs on trips to and from stations[J]. Journal of Urban Planning and Development, 2016, 142(1): 0401511 01.
  • 7ZHOU X L. Understanding spatiotemporal pat- terns of biking behavior by analyzing massive bike sharing data in Chicago[J]. PLoS One, 2015 - 10-07; doi: 10.1371/journal.pone.0137922.
  • 8李黎辉,陈华,孙小丽.武汉市公共自行车租赁点布局规划[J].城市交通,2009,7(4):39-44. 被引量:88
  • 9夏英,梁中军,王国胤.基于时空分析的短时交通流量预测模型[J].南京大学学报(自然科学版),2010,46(5):552-560. 被引量:8
  • 10潘海啸,汤諹,麦贤敏,牟玉江.公共自行车交通发展模式比较[J].城市交通,2010,8(6):40-43. 被引量:61

共引文献301

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部