期刊文献+

一种图像传感器灰度响应非线性现象校正方法 被引量:2

An Image Sensor Gray Response Nonlinear Phenomenon Correction Method
在线阅读 下载PDF
导出
摘要 图像传感器校正方法是提高图像传感器输出图像质量的关键手段。针对传统图像传感器校正方法只是单一的对图像传感器非均匀性或者非线性进行校正且通用性较差的问题,基于光子转换理论提出了一种图像传感器灰度响应非线性现象校正方法。针对一款科学级CCD与一款科学级CMOS图像传感器作为实验对象进行校正。实验结果表明,该方法可以同时对图像传感器的非均匀性及非线性现象进行校正,校正后图像传感器输出图像的对比度及均匀性得到显著提升。此外,该算法对CCD图像传感器及CMOS图像传感器均有校正效果,具有明显的通用性。 The method of correcting the image sensor is the key means to improve the output image of the image sensor.The traditional method of correcting the image sensor only aims to correct the non-uniformity or nonlinearity of the image sensor and has poor versatility.This thesis provides a grayscale response of nonlinearity phenomenon correcting a scientific CCD and a scientific CMOS image sensor.Experimental results show that this method could correct the non-uniformity and nonlinearity of the image sensor at the same time.The contrast and uniformity of the output image got a significant boost after correction.Besides,in this algorithm,there is a correction effect for both CCD image sensor and CMOS image sensor,which proves its versatility.
作者 袁鹏程 李俊山 孙富礼 王灿 YUAN Peng-cheng;LI Jun-shan;SUN Fu-li;WANG Can(Shanghai Radio Equipment Research Institute,Shanghai 201109)
出处 《制导与引信》 2019年第3期26-33,共8页 Guidance & Fuze
关键词 图像传感器校正 非线性 图像对比度 image sensor correction nonlinearity image contrast
作者简介 袁鹏程(1994-),男,助理工程师,硕士;李俊山(1985-),男,高级工程师,硕士,主要从事硬件电路开发及数字信号处理技术研究。
  • 相关文献

参考文献1

二级参考文献19

  • 1MARKS D L’LLULL P Kfet al. . Characterization of the AWARE 10 two- gigapixel wide-field-of-view visible imager[ J].Applied Optics ,2014,53( 13) :54-63.
  • 2ZHOU Y L,MEI K Z,et al. . Parallelization and Optimization of SIFT on GPU Using CUDA[ C]. IEEE 15th Internationalconference on high performance computing and communication(HPCC 2013) ,Changsha,China,2013:1351-1358.
  • 3GARCIA V,DEBREUVE E,NIELSEN F,et al. . K-nearest neighbor search:fast GPU-based implementations and applica-tion to high-dimensional feature matching[ C]. IEEE 17th International conference on Image processing,Hong Kong, Chi-na,2010 :3757-3760.
  • 4MUJA M,LOWE D G. Scalable nearest neighbor algorithms for high dimensional data[ J]. IEEE,2014 736( 11 ) :2227-2240.
  • 5GUANG J S,XIANG Y X,YA P D. SIFT feature Point matching based on Improved RANSAC algorithm[ C]. 5th Interna-tional Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC ) , Hangzhou, China ,2013 :474-477.
  • 6田文,徐帆,王宏远,周波.基于CUDA的尺度不变特征变换快速算法[J].计算机工程,2010,36(8):219-221. 被引量:14
  • 7吕恒毅,刘杨,郭永飞.遥感相机焦面CCD机械拼接中重叠像元数的确定[J].光学精密工程,2012,20(5):1041-1047. 被引量:27
  • 8郭一汉,史美萍,吴涛.基于GPU的实时图像拼接[J].计算机科学,2012,39(7):257-261. 被引量:7
  • 9丘文涛,赵建,刘杰.结合区域分割的SIFT图像匹配方法[J].液晶与显示,2012,27(6):827-831. 被引量:33
  • 10闫钧华,杭谊青,许俊峰,储林臻.基于CUDA的高分辨率数字视频图像配准快速实现[J].仪器仪表学报,2014,35(2):380-386. 被引量:27

共引文献9

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部