期刊文献+

基于LSTM与注意力机制的船舶航迹预测模型研究 被引量:7

On Ship Track Prediction with LSTM and Attention Mechanism
在线阅读 下载PDF
导出
摘要 在内河通航船舶数量不断增加和通航环境日益复杂的情况下,为充分挖掘海量AIS数据中的价值信息,针对内河船舶航迹预测中的精度和可靠性问题,应用循环神经网络方法,提出了一种结合深度学习注意力机制(Attention Mechanism)和长短期记忆网络(Long Short-Term Memory,LSTM)的船舶航迹预测模型。该模型以历史时刻的船舶位置、速度及航向等数据为基础,考虑AIS数据与船舶航迹的时间序列特性,基于LSTM编码-解码航迹预测基本模型,通过引入时间与空间注意力机制,模拟了船舶自身航行模式和船舶交互作用对航迹预测的影响,定义了模型的损失函数和输出方式,构建了完整的Atten-LSTM航迹预测模型。应用海事AIS数据进行模型训练和航迹预测分析,实验结果表明在船舶安全航行条件下,Atten-LSTM模型具有易实现、精度高、可靠性强的特点。 A method of ship track prediction based on combination of attention mechanism and long short-term memory is developed to cope with the complexity of inland river traffic that brought about by navigational environment and heavy traffic density.Valuable information is extracted from AIS data mining with the method.A LSTM encode-decode prediction model is built for process ship historical AIS data according to the sequential character of AIS position data.The temporal and spatial attention mechanism is introduced into the basic LSTM encode-decode prediction model to simulate the motion of ships sailing on their own and the impact of encountering situations.The loss function and output mode are defined and the attention-LSTM model of recurrent neural network type is completed.The model is trained and verified with existing AIS data sets.
作者 刘成勇 乔文杰 陈蜀喆 万一 LIU Chengyong;QIAO Wenjie;CHEN Shuzhe;WAN Yi(School of Navigation,Wuhan University of Technology,Wuhan 430063,China;Hubei Inland Technology Key Laboratory,Wuhan 430063,China)
出处 《中国航海》 CSCD 北大核心 2021年第4期94-100,106,共8页 Navigation of China
基金 国家自然科学基金青年科学基金项目(51809207)
关键词 航迹预测 循环神经网络 Atten-LSTM 注意力机制 模型训练 ship track prediction recurrent neural network attention-LSTM attention mechanism model training
作者简介 刘成勇(1976-),男,湖北武汉人,副教授,工学博士,研究方向为交通环境与安全保障。E-mail:lcywhut@163.com
  • 相关文献

参考文献6

二级参考文献41

  • 1郭洪贵,东昉,方祥麟,金一丞,谷伟.墨卡托航行和大圆航线的微机计算法[J].大连海运学院学报,1989,15(1):20-33. 被引量:3
  • 2郭运韬,朱衍波,黄智刚.民用飞机航迹预测关键技术研究[J].中国民航大学学报,2007,25(1):20-24. 被引量:25
  • 3YEPES J L , HWANG I, ROTEA M . New algorithms for aircraft intent inference and trajectory prediction[J ]. Journal of Guidance Control and Dynamics, 2007,30 : 370 - 382.
  • 4PORRETTA M, DUPUY M D, SCHUSTER W, et al. Performance evaluation of a novel 4D trajectory prediction model for civil aircraft[J]. Journal of Navigation, 2008,61- 393 - 420.
  • 5LYMPEROPOULOS L, LYGEROS J. Sequential Monte Carlo methods for multi-aircraft trajectory prediction in air traffic management [ J]. International Journal of Adaptive Control and Signal Processing, 2010, 24:830- 849.
  • 6UENG S K, LIN D, LIU C H. A ship motion simulation system[ J ]. Virtual Reality, 2008, 12: 65 - 76.
  • 7LAGUNA M, MARTI R. Neural network prediction in a system for optimizing simulations [ J ]. IIE Transactions, 2002,34 : 273 - 282.
  • 8MAIER H R, DANDY G C. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applieations[J ]. Environmental Modeling and Software, 2000,15 ( 1 ) : 101 - 124.
  • 9交通运输部海事局.海事信息系统顶层设计报告[R].2011.
  • 10大数据[EB/OL].百度百科. http://baike.baidu.com/link ?url=4L3ydDT_1tOeCyLgiNCA68L5tAILFArJl6RX44lEB322Z1MMAW6Ix MZiFNe_NAY4taMk_wcgNUA5lICosdjuna#refIndex_1_7093827,2014-04-28.

共引文献130

同被引文献75

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部