期刊文献+

网约性行为青少年自我报告性病艾滋病感染情况及相关因素分析 被引量:2

Prevalence of self-reported sexually transmitted diseases/AIDS infection and its associated factors among adolescents and young adults with online sex-seeking experience in China
原文传递
导出
摘要 目的了解我国网约性行为青少年性病艾滋病(sexually transimitted diseases/acquired immunodeficiency syndrome,STD/AIDS)感染情况。方法2017年9—11月,利用滚雪球法在中国部分网络社交平台对15~24岁青少年开展网约性行为现况调查,收集个人一般情况、STD/AIDS相关危险行为、自我报告STD/AIDS感染情况等信息。利用χ^(2)检验、Fisher确切概率法和决策树模型对与自我报告STD/AIDS感染相关因素进行分析。结果调查730例网约青少年,自我报告STD/AIDS感染病史31例(4.25%)。男性24例(5.97%),女性7例(2.13%),差异有统计学意义(χ^(2)=6.536,P=0.011);网约性伴为同性者16例(15.69%),异性者13例(2.27%)、双性及其他类型者2例(3.64%),差异有统计学意义(χ^(2)=27.107,P<0.01)。决策树模型共3层,8个节点,纳入3个因素;网约性伴类型、性别和年龄对因变量的标准化重要性分别为100.00%、11.60%和2.94%;Risk统计量(0.042)、索引图和收益图显示模型拟合良好;决策树模型显示,男男同性性行为人群、年龄较小、双性及其他性行为者的感染概率分别为15.69%、4.17%和2.39%,是该人群感染STD/AIDS主要影响因素。结论网约性行为青少年自我报告STD/AIDS感染率高,应针对感染相关的因素加强预防性传播疾病健康教育,实施精准干预。 Objective To understand the prevalence of sexually transmitted diseases/acquired immunodeficiency syndrome(STD/AIDS)infection and its associated factors among adolescents and young adults with online sex-seeking experience in China.Methods A cross-sectional survey of online sexual behaviors was conducted on some social media platforms in China among young people in the age range of 15-24 years selected using snowball sampling.Information about demographic characteristics,risk behaviors related to STD/AIDS,self-reported STD/AIDS infection,etc.were collected.Chi-square test,Fisher's exact test and decision tree algorithm were employed to explore the associations between the self-reported STD/AIDS infection and risk factors.Results Altogether 730 young people with on-line sex-seeking experience were surveyed,among whom 31 reported history of STD/AIDS infection(4.25%).The rate of self-reported infection in males(5.97%)was statistically significantly higher than that in females(2.13%)(χ^(2)=6.536,P=0.011);participants with homosexual partners(15.69%)had a statistically significantly higher self-reported infection rate than those with heterosexual(2.27%)or other types of partners(3.64%)(χ^(2)=27.107,P<0.01).The decision tree model consisting of 8 nodes in 3 strata identified 3 variables,namely the type of online sexual partners,gender,and age,of which the normalized importance in the decision tree were 100.00%,11.60%,and 2.94%,respectively.The risk value(0.042),index chart and gain chart demonstrated the good fitness of model.The decision tree model revealed that the predicted probabilities of infection for men who have sex with men(MSM),those of younger age,and those being bisexual or having other sexual behaviors were 15.69%,4.17%,and 2.39%,respectively,and those attributes were main factors correlated with STD/AIDS infection in this population.Conclusions Self-reported STD/AIDS infection is prevalent among adolescents and young adults with online sex-seeking experience.Health education on STD/AIDS infection should be strengthened targeting the associated factors,thereby implementing precision interventions for this population.
作者 李健 潘玲 单多 蔡凌萍 张蕾 刘中夫 张大鹏 LI Jian;PAN Ling;SHAN Duo;CAI Lingping;ZHANG Lei;LIU Zhongfu;ZHANG Dapeng(National Center for AIDS/STD Control and Prevention,China Center for Disease Control and Prevention,Beijing 102206,China;不详)
出处 《中国预防医学杂志》 CAS CSCD 北大核心 2023年第10期1045-1049,共5页 Chinese Preventive Medicine
基金 国家自然科学基金资助项目(71774150)
关键词 性病 艾滋病 青少年 网约性行为 Sexually transmitted diseases Acquired immunodeficiency syndrome Adolescents and young adults Online sex-seeking
作者简介 李健,博士后,研究员,主要从事丙肝艾滋病防控研究;通信作者:张大鹏,E-mail:zhangdapeng@chinaaids.cn
  • 相关文献

参考文献9

二级参考文献88

  • 1吕华坤,许卫国,王蓓,陈永弟,朱永东,陈亚飞.江苏省农村居民结核病危险因素病例对照研究[J].中国公共卫生,2004,20(12):1450-1451. 被引量:19
  • 2陆兰英,王卫华,曾庆志,袁宝东,黄健.武汉地区耐多药结核病危险因素的病例对照研究[J].中国防痨杂志,2005,27(5):340-342. 被引量:15
  • 3张勇晶,陈坤,金明娟,范春红.应用分类树模型筛选恶性肿瘤危险因素的研究[J].中华流行病学杂志,2006,27(6):540-543. 被引量:24
  • 4Breiman L, Friedman JH, etal. Classification and regression tresss. Bel-mont, California:Wadsworth, 1984.
  • 5http://www.statsoft.com/textbook/stcart.html#formulas.
  • 6A classification of delivery patient groups using CART (Classification and Regression Trees) for an improvement of critical path. Stud Health Teehnol Inform, 2006,122:913.
  • 7Application of data mining techniques to healthcare data. Infect Control Hosp Epidemiol, 2004, 25(8):690-695.
  • 8SPSS Inc. AnswerTree 3. 0 User's Guide. Chicago, Illinois, SPSS Inc, 2001,7.
  • 9Quinlan JR. Induction of decision Tree. Machine Learning 1,1986:81-106.
  • 10Quinlan JR. Induction of decision Tree. Machine Learning, 1986,1 ( 1 ) 81-106.

共引文献129

同被引文献32

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部