期刊文献+

基于深度学习模型的我国药品不良反应报告实体关系抽取研究 被引量:10

Research on entity relation extraction of Chinese adverse drug reaction reports based on deep learning method
在线阅读 下载PDF
导出
摘要 药品不良反应(adverse drug reaction,ADR)报告作为药品上市后安全评价的主要载体,对药物安全评价研究具有重要的参考价值。本文以深度学习模型中的双向门控循环单元(bidirectional gated recurrent unit,Bi-GRU)结构为基础,引入注意力机制以及字向量与分词向量优化模型,对我国ADR报告中的ADR过程描述部分进行"药品-不良反应"的关系抽取研究。实验结果表明,基于深度学习的实体关系抽取模型在确认不良反应描述中"药品-不良反应"对之间的关系(否认、可能、直接和后处理)的分类任务中达到了很好的性能,最终模型取得87.52%的F值。所提取的信息在辅助ADR报告评价的同时,可进一步运用于特定药物的不良反应统计学研究以及知识库构建等任务中,从而为药物安全性评价研究提供更多的研究手段。 Adverse drug reaction(ADR) reports are acting as primary sources for post-marketing drug safety evaluation,which have important reference value for drug safety evaluation.In this article,bidirectional gated recurrent unit,a kind of deep learning method,was applied as the model for relation extraction of drugs and adverse reactions in free-text section of ADR descriptions in Chinese ADR reports,with attention as well as character embedding and word segmentation embedding added into the network.The experimental results showed that our model achieved good performance in the classification task of confirming the relationship of "Drug-ADR" pair(denial,likely,direct and post-therapy) in the ADR description,and the final model achieved an F-value of 87.52%.The extracted information can assist in evaluating ADR reports and at the same time be utilized in tasks like statistical analysis of certain drugs and adverse events and ADR knowledge base construction to provide more research techniques for drug safety researches.
作者 陈瑶 吴红 葛卫红 张海霞 廖俊 CHEN Yao;WU Hong;GE Weihong;ZHANG Haixia;LIAO Jun(School of Science,China Pharmaceutical University,Nanjing 211198;Department of Pharmacy,Nanjing Drum Tower Hospital,Nanjing 210008; Key Laboratory of Drug Quality Control and Pharmacovigilance(China Pharmaceutical University),Ministry of Education,Nanjing 210009,China)
出处 《中国药科大学学报》 CAS CSCD 北大核心 2019年第6期753-759,共7页 Journal of China Pharmaceutical University
基金 国家自然科学基金资助项目(No.81773806) 双一流创新团队资助项目(No.CPU2018GY19) 江苏省食品药品监督管理局2017—2018年度科研项目资助项目(No.20170308).
关键词 药品不良反应 关系抽取 药物安全评价 深度学习 双向门控循环单元 adverse drug reaction relation extraction drug safety evaluation deep learning bidirectional gated recurrent unit
作者简介 通信作者:廖俊,Tel:025-86185122,E-mail:liaojun@cpu.edu.cn
  • 相关文献

参考文献4

二级参考文献37

  • 1车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:121
  • 2张素香,李蕾,秦颖,钟义信.基于Boot Strapping的中文实体关系自动生成[J].微电子学与计算机,2006,23(12):15-18. 被引量:3
  • 3黄伯荣,廖序东.现代汉语[M].3版.北京:高等教育出版社,2002:12.
  • 4Bach N,Badaskar S.A Review of Relation Extraction[D].Pittsburgh,USA:Carnegie Mellon School,2007.
  • 5Banko M,Cafarella M J,Soderland S,et al.Open Information Extraction from the Web[C]//Proceedings of the 20th International Joint Conference on Artifical Intelligence.New York,USA:ACM Press,2007:2670-2676.
  • 6Wu Fei,Weld D S.Open Information Extraction Using Wikipedia[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics.New York,USA:ACM Press,2010:118-127.
  • 7Fader A,Soderland S,Etzioni O.Identifying Relations for Open Information Extraction[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.New York,USA:ACM Press,2011:1535-1545.
  • 8Etzioni O,Fader A,Christensen J,et al.Open Information Extraction:The Second Generation[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence.Berlin,Germany:Springer,2011:3-10.
  • 9Chen Jinxiu,Dong Hong.Relation Extraction Using Label Propagation Based Semi-supervised Learning[C]//Proceedings of the 21st International Conference on Computational Linguistics.Stroudsburg,USA:Association for Computational Linguistics,2006:129-136.
  • 10Cvitas A.Relation Extraction from Text Document[C]//Proceedings of the 34th International Convention on Manufactured Imports Promotion Organization.Washington D.C.,USA:IEEE Press,2011:23-27.

共引文献59

同被引文献119

引证文献10

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部