期刊文献+

经验小波变换在回转窑故障检测中的应用研究

Research on Empirical Wavelet Transform in Fault Detection of Rotary Kiln
原文传递
导出
摘要 针对经验模态分解(EMD)易产生模态混叠现象的问题,提出了一种基于经验小波变换(EWT)的回转窑托轮振动信号分析方法。EWT根据频域极大值点对傅里叶频谱进行划分,自适应地构造小波滤波器组以提取傅里叶频谱中的调幅-调频(AM-FM)函数,能够有效防止模态混叠的出现。仿真实验和托轮振动信号的研究表明:EWT提取的AM-FM函数中包含信号的特征模态,其分解结果优于EMD。最后将托轮振动信号的EWT结果与其他回转窑检测方法结果进行对比,验证了EWT在回转窑故障检测中的正确性。 According to the problem of empirical mode decomposition(EMD)easily causing virtual modes,an analysis method of vibration signal of rotary kiln roller based on empirical wavelet transform(EWT)is proposed.The Fourier spectrum has been cut into segments by EWT through extracting the maximal value in the frequency domain,thereby adaptively constructing a wavelet filter bank to extract the amplitude-modulation(AM-FM)function in the Fourier spectrum,which can effectively eliminate modal aliasing.The simulation experiment and research on the vibration signal of the roller show that the AM-FM functions extracted by EWT contain the characteristic mode of the signal,and its decomposition result is better than EMD.Finally,the EWT results of the roller vibration signal are compared with the results of other rotary kiln detection methods,which verifies the correctness of EWT in fault detection of rotary kiln.
作者 胡航宇 张云 HU Hangyu;ZHANG Yun(School of Mechanical and Electronic Engineering,Wuhan University of Technology,Wuhan 430070,China;Testing Center of Rotary Kiln for National Building Materials Industry,Wuhan University of Technology,Wuhan 430070,China)
出处 《数字制造科学》 2020年第1期139-144,共6页
关键词 经验小波变换 回转窑 托轮 特征模态 经验模态分解 empirical wavelet transform rotary kiln roller characteristic mode empirical mode decomposition
作者简介 胡航宇(1994-),男,湖北武汉人,武汉理工大学机电工程学院硕士研究生.
  • 相关文献

参考文献5

二级参考文献35

  • 1李志农,吕亚平,范涛,冷传广.基于经验模态分解的机械故障欠定盲源分离方法[J].航空动力学报,2009,24(8):1886-1892. 被引量:18
  • 2孟荣光,沈久珩.回转窑轴向力的检测和应用[J].有色设备,1996,10(4):21-26. 被引量:6
  • 3Walter M Gebhart. Paradigm Shift in Alignment Technology [J].World Cement, 2008 (6):42-43.
  • 4lou lovas.Comprehensive Kiln Alignment[J].World Cement, 2008(11):1-4.
  • 5彭宇宁,朱后.利用DLL技术实现LabVIEW和MATLAB混合编程[J].计算机与现代化,2007(8):93-95. 被引量:18
  • 6HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceeding of the Royal Society A,1998, 454(1971): 903-995.
  • 7YU D J, YANG Y, CHENG J SH. Application of time-frequency entropy method based on Hilbert-Huang transform to gear fault diagnosis[J]. Measurement, 2007, 40(9): 823-830.
  • 8YANG ZH, YU ZH, C/-IAO X, et al. Application of Hilbert-Huang Transform to acoustic emission signal for bum feature extraction in surface grinding process[J]. Measurement, 2014, 47: 14-21.
  • 9WANG Y S, MA Q H, ZHU Q, et al. An intelligent approach for engine fault diagnosis based on Hilbert-Huang transform and support vector machine [J]. Applied Acoustics, 2014, 75(1): 1-9.
  • 10RAI V K, MOHANTY A R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform [J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2607-2615.

共引文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部