摘要
                
                    针对瓦楞纸箱表面缺陷对纸箱质量的影响问题,建立了纸箱表面缺陷数据集,设计了基于YOLO v3算法对纸箱表面缺陷进行检测的深度神经网络模型,并使用PyQt工具设计了能够识别纸箱表面缺陷的软件,它与人工检测相比具有更高的速度、精度和稳定性,能够实现瓦楞纸箱表面缺陷特征实时检测。
                
                This paper describes a solution for detecting surface defect in cardboard cartons based on a deep neural network design.The approach is to use a neural network to recognize the characteristics of surface defects in real-time and provide more accurate,faster,and stable detection compared to manual detection methods.
    
    
                作者
                    吴飞
                    蒋罗彬
                    贾伟萍
                    刘文婷
                    沈大伟
                    杜刚
                WU Fei;JIANG Luobin;JIA Weiping;LIU Wenting;SHEN Dawei;DU Gang(School of Mechanical and Electronic Engineering,Wuhan University of Technology,Wuhan 430070,China;China Tobacco Hubei Industrial.LLC,Wuhan 430040,China)
     
    
    
    
                关键词
                    瓦楞纸箱
                    缺陷检测
                    机器视觉
                    深度学习
                    神经网络
                
                        corrugated box
                        defect detection
                        machine vision
                        deep learning
                        neural network
                
     
    
    
                作者简介
吴飞(1973-),男,湖北武汉人,武汉理工大学机电工程学院教授.