随着数据获取方式的多样化发展,针对多视图领域的算法研究变得越来越重要,但大多数方法仅通过自表示属性或局部结构获取样本间的相似性关系,在此过程中忽略了整体样本的聚类结构和原始空间的噪声的影响,使得聚类结果存在较大误差。为解...随着数据获取方式的多样化发展,针对多视图领域的算法研究变得越来越重要,但大多数方法仅通过自表示属性或局部结构获取样本间的相似性关系,在此过程中忽略了整体样本的聚类结构和原始空间的噪声的影响,使得聚类结果存在较大误差。为解决此问题,提出了一种基于聚类结构和局部相似性的多视图隐空间聚类方法(multi-view latent subspace clustering with cluster structure and local similarity,MLC2L),通过隐表示融合不同视图上的共享信息并抑制噪声的存在。此外,通过探索隐空间内样本间的局部相似性关系和整体的聚类结构促进样本达到同类聚合、异类远离的目的;最后引入一个交替方向迭代优化算法来快速求解目标函数。实验结果显示,在六个真实数据集的实验中,MLC2L在MSRC-v1、UCI以及100Leaves上的五个评价指标均为最优,在3Sources、WebKB和Prokaryotic等数据集上的五个指标有四个最优,大量的实验分析也证明了融合局部结构和整体聚类结构的MLC2L在多视图聚类任务上的有效性。展开更多
密度峰值聚类(density peaks clustering, DPC)算法基于局部密度和相对距离识别簇中心,忽视了样本所处环境对样本点密度的影响,因此不容易发现低密度区域的簇中心;DPC算法采用的单步分配策略的容错性差,一旦一个样本点分配错误,将导致...密度峰值聚类(density peaks clustering, DPC)算法基于局部密度和相对距离识别簇中心,忽视了样本所处环境对样本点密度的影响,因此不容易发现低密度区域的簇中心;DPC算法采用的单步分配策略的容错性差,一旦一个样本点分配错误,将导致后续一系列样本点分配错误。针对上述问题,提出二阶自然最近邻和多簇合并的密度峰值聚类算法(TNMM-DPC)。首先,引入二阶自然邻居的概念,同时考虑样本点的密度与样本点所处的环境,重新定义了样本点的局部密度,以降低类簇的疏密对类簇中心选择的影响;其次,定义了核心点集来选取初始微簇,依据样本点与微簇间的关联度对样本点进行分配;最后引入了邻居边界点集的概念对相邻的子簇进行合并,得到最终的聚类结果,避免了分配错误连带效应。在人工数据集和UCI数据集上,将TNMM-DPC算法与DPC及其改进算法进行了对比,实验结果表明,TNMM-DPC算法能够解决DPC算法所存在的问题,可以有效聚类人工数据集和UCI数据集。展开更多
在室内停车场中应用基于RFID的LANDMARC算法进行车辆定位时,由于室内停车场的复杂结构以及多径效应的影响,车辆定位精度不能通过增加参考标签数目或均匀规则的部署参考标签等方式来提升。提出了一种基于虚拟RFID标签的室内定位算法(loca...在室内停车场中应用基于RFID的LANDMARC算法进行车辆定位时,由于室内停车场的复杂结构以及多径效应的影响,车辆定位精度不能通过增加参考标签数目或均匀规则的部署参考标签等方式来提升。提出了一种基于虚拟RFID标签的室内定位算法(location algorithm based on virtual tag,LAVT)。该算法通过近邻标签确定车辆的近邻区域,计算出近邻区域的外心并插入虚拟参考标签;通过虚拟参考标签替换原近邻标签、缩小近邻区域面积,使新近邻标签更临近待定位车辆,从而更精确地计算出车辆的位置。仿真实验表明:LAVT算法在室内停车场环境中将车辆定位精度提升了19.03%。LAVT算法应用于室内停车场环境中的车辆定位具有更好的适用性,能满足室内停车场车辆定位的基本需求。展开更多
文摘在对享受基于位置服务(LBS)用户进行位置隐私保护时,传统k-匿名技术在执行匿名操作时没有全面考虑时间开销和位置背景信息。针对上述问题,提出了一种基于Alt-Geohash编码的k-匿名位置隐私保护方案(k-anonymous location privacy protection scheme based on Alt-Geohash coding,KLPPS-AGC)。首先,通过位置泛化和Alt-Geohash编码技术实现对历史数据的快速检索;其次,根据历史查询概率筛选出能与用户构建高位置熵的位置;再次,利用海伦公式改善匿名集的位置分散度;最后,构建安全匿名集实现对用户的位置隐私保护。实验证明,该方案拥有较低的时间开销和较高的隐私性。
文摘随着数据获取方式的多样化发展,针对多视图领域的算法研究变得越来越重要,但大多数方法仅通过自表示属性或局部结构获取样本间的相似性关系,在此过程中忽略了整体样本的聚类结构和原始空间的噪声的影响,使得聚类结果存在较大误差。为解决此问题,提出了一种基于聚类结构和局部相似性的多视图隐空间聚类方法(multi-view latent subspace clustering with cluster structure and local similarity,MLC2L),通过隐表示融合不同视图上的共享信息并抑制噪声的存在。此外,通过探索隐空间内样本间的局部相似性关系和整体的聚类结构促进样本达到同类聚合、异类远离的目的;最后引入一个交替方向迭代优化算法来快速求解目标函数。实验结果显示,在六个真实数据集的实验中,MLC2L在MSRC-v1、UCI以及100Leaves上的五个评价指标均为最优,在3Sources、WebKB和Prokaryotic等数据集上的五个指标有四个最优,大量的实验分析也证明了融合局部结构和整体聚类结构的MLC2L在多视图聚类任务上的有效性。
文摘密度峰值聚类(density peaks clustering, DPC)算法基于局部密度和相对距离识别簇中心,忽视了样本所处环境对样本点密度的影响,因此不容易发现低密度区域的簇中心;DPC算法采用的单步分配策略的容错性差,一旦一个样本点分配错误,将导致后续一系列样本点分配错误。针对上述问题,提出二阶自然最近邻和多簇合并的密度峰值聚类算法(TNMM-DPC)。首先,引入二阶自然邻居的概念,同时考虑样本点的密度与样本点所处的环境,重新定义了样本点的局部密度,以降低类簇的疏密对类簇中心选择的影响;其次,定义了核心点集来选取初始微簇,依据样本点与微簇间的关联度对样本点进行分配;最后引入了邻居边界点集的概念对相邻的子簇进行合并,得到最终的聚类结果,避免了分配错误连带效应。在人工数据集和UCI数据集上,将TNMM-DPC算法与DPC及其改进算法进行了对比,实验结果表明,TNMM-DPC算法能够解决DPC算法所存在的问题,可以有效聚类人工数据集和UCI数据集。
文摘在室内停车场中应用基于RFID的LANDMARC算法进行车辆定位时,由于室内停车场的复杂结构以及多径效应的影响,车辆定位精度不能通过增加参考标签数目或均匀规则的部署参考标签等方式来提升。提出了一种基于虚拟RFID标签的室内定位算法(location algorithm based on virtual tag,LAVT)。该算法通过近邻标签确定车辆的近邻区域,计算出近邻区域的外心并插入虚拟参考标签;通过虚拟参考标签替换原近邻标签、缩小近邻区域面积,使新近邻标签更临近待定位车辆,从而更精确地计算出车辆的位置。仿真实验表明:LAVT算法在室内停车场环境中将车辆定位精度提升了19.03%。LAVT算法应用于室内停车场环境中的车辆定位具有更好的适用性,能满足室内停车场车辆定位的基本需求。