期刊文献+

《计算机应用》 CSCD 北大核心

作品数24675被引量101603H指数67
《计算机应用》创刊于1981年,是中国计算机学会会刊。以介绍计算机应用技术为重点,以推动经济发展和科技进步为宗旨,以促进计算机开发应用创新为目标。由包括张景中、潘云鹤、何积丰、周巢尘、陈国良院士在内的...查看详情>>
  • 主办单位四川省计算机学会;中国科学院成都分院
  • 国际标准连续出版物号1001-9081
  • 国内统一连续出版物号51-1307/TP
  • 出版周期月刊
共找到24,675篇文章
< 1 2 250 >
每页显示 20 50 100
级联融合与增强重建的多聚焦图像融合网络
1
作者 杨本臣 李浩然 金海波 《计算机应用》 北大核心 2025年第2期594-600,共7页
针对数字图像拍摄过程中因远近视野聚焦不当所导致的半聚焦图像问题,提出一种级联融合与增强重建的多聚焦图像融合网络(CasNet)。首先,构建级联采样模块对不同深度采样特征图的残差进行计算与合并,从而高效利用不同尺度下的聚焦特征;其... 针对数字图像拍摄过程中因远近视野聚焦不当所导致的半聚焦图像问题,提出一种级联融合与增强重建的多聚焦图像融合网络(CasNet)。首先,构建级联采样模块对不同深度采样特征图的残差进行计算与合并,从而高效利用不同尺度下的聚焦特征;其次,改进轻量化多头自注意力机制以计算特征图的维度残差,从而完成图像的特征增强,并使特征图在不同维度上呈现更优分布;再次,使用卷积通道注意力堆叠完成特征重建;最后,在采样过程中使用分隔卷积进行上下采样,从而保留更多的图像原有特征。实验结果表明,在多聚焦图像基准测试集Lytro、MFFW、grayscale和MFI-WHU上,CasNet相较于SESF-Fuse(Spatially Enhanced Spatial Frequency-based Fusion)和U2Fusion(Unified Unsupervised Fusion network)等热门方法在平均梯度(AG)、灰度级差(GLD)等指标上都取得了较好的结果。 展开更多
关键词 多聚焦图像融合 深度神经网络 特征重建 特征增强 注意力
在线阅读 下载PDF
基于关系网络和Vision Transformer的跨域小样本分类模型
2
作者 严一钦 罗川 +1 位作者 李天瑞 陈红梅 《计算机应用》 北大核心 2025年第4期1095-1103,共9页
针对小样本学习模型在数据域存在偏移时分类准确度不高的问题,提出一种基于关系网络和ViT(Vision Transformer)的跨域小样本图像分类模型ReViT(Relation ViT)。首先,引入ViT作为特征提取器,并使用经过预训练的深层神经网络解决浅层神经... 针对小样本学习模型在数据域存在偏移时分类准确度不高的问题,提出一种基于关系网络和ViT(Vision Transformer)的跨域小样本图像分类模型ReViT(Relation ViT)。首先,引入ViT作为特征提取器,并使用经过预训练的深层神经网络解决浅层神经网络的特征表达能力不足的问题;其次,以浅层卷积网络作为任务适配器提升模型的知识迁移能力,并基于关系网络和通道注意力机制构建非线性分类器;随后,将特征提取器和任务适配器进行特征融合,从而增强模型的泛化能力;最后,采取“预训练-元学习-微调-元测试”四阶段学习策略训练模型,有效融合迁移学习与元学习,进一步提升ReViT的跨域分类性能。以平均分类准确率为评估指标的实验结果表明,ReViT在跨域小样本分类问题上有良好的性能。具体地,ReViT的分类准确度在Meta-Dataset的域内场景下和域外场景下相较于次优的模型分别提升了5.82和1.71个百分点,在BCDFSL(Broader study of Cross-Domain Few-Shot Learning)数据集的3个子问题EuroSAT(European SA Tellite data)、CropDisease和ISIC(International Skin Imaging Collaboration)的5-way 5-shot上相较于次优的模型分别提升了1.00、1.54和2.43个百分点,在EuroSAT、CropDisease和ISIC的5-way20-shot上相较于次优的模型分别提升了0.13、0.97和3.40个百分点,在CropDisease的5-way 50-shot上相较于次优的模型提升了0.36个百分点。可见,ReViT能在样本量稀少的图像分类任务上保持良好的准确率。 展开更多
关键词 小样本学习 关系网络 跨域学习 元学习 图像分类
在线阅读 下载PDF
融合时序行为链与事件类型的类案检索方法 被引量:1
3
作者 詹力林 秦永彬 +2 位作者 黄瑞章 王华 陈艳平 《计算机应用》 北大核心 2025年第6期1741-1747,共7页
针对现有的类案检索(LCR)方法缺乏对案情要素的有效利用而容易被案例内容的语义结构相似性误导的问题,提出一种融合时序行为链与事件类型的类案检索方法。首先,采取序列标注的方法识别案情描述中的法律事件类型,并利用案例文本中的行为... 针对现有的类案检索(LCR)方法缺乏对案情要素的有效利用而容易被案例内容的语义结构相似性误导的问题,提出一种融合时序行为链与事件类型的类案检索方法。首先,采取序列标注的方法识别案情描述中的法律事件类型,并利用案例文本中的行为要素构建时序行为链,以突出案情的关键要素,从而使模型聚焦于案例的核心内容,进而解决现有方法易被案例内容的语义结构相似性误导的问题;其次,利用分段编码构造时序行为链的相似性向量表征矩阵,从而增强案例间行为要素的语义交互;最后,通过聚合评分器,从时序行为链、法律事件类型、犯罪类型这3个角度衡量案例的相关性,从而增加案例匹配得分的合理性。实验结果表明,相较于SAILER(Structure-Aware pre-traIned language model for LEgal case Retrieval)方法,所提方法在LeCaRD(Legal Case Retrieval Dataset)上的P@5值提升了4个百分点、P@10值提升了3个百分点、MAP值提升了4个百分点,而NDCG@30值提升了0.8个百分点。可见,该方法能有效利用案情要素来避免案例内容的语义结构相似性的干扰,并能为类案检索提供可靠的依据。 展开更多
关键词 案情要素 行为要素 事件类型 时序行为链 聚合评分器
在线阅读 下载PDF
基于能见度增强的森林火灾烟雾检测方法
4
作者 李铜 陈才华 刘军军 《计算机应用》 北大核心 2025年第S1期251-256,共6页
针对当前森林火灾烟雾检测方法的烟雾识别准确度低和网络模型规模较大的问题,提出一种利于部署到边缘计算设备的基于YOLOv8的森林火灾烟雾检测方法。首先,基于YOLOv8框架,用GD(Gather and Distribute)机制替换YOLOv8中CSP(Cross Stage P... 针对当前森林火灾烟雾检测方法的烟雾识别准确度低和网络模型规模较大的问题,提出一种利于部署到边缘计算设备的基于YOLOv8的森林火灾烟雾检测方法。首先,基于YOLOv8框架,用GD(Gather and Distribute)机制替换YOLOv8中CSP(Cross Stage Partial)结构的Neck部分,增强特征融合的能力,提高网络的预测精度;其次,使用深度可分离卷积(DWConv)模块替换网络Backbone部分的普通卷积模块;最后,提出Enhanced-SPPF(Enhanced Spatial Pyramid Pooling Fast)模块,降低模型参数量和计算量,得到模型的轻量化版本——YOLO-DE-Tiny模型。此外,使用烟雾能见度增强模块进一步提高模型在森林环境下对烟雾画面的检测精度。在火灾科学国家重点实验室(SKLFS)数据集上的实验结果表明,YOLO-DE-Tiny对火灾烟雾检测的查准率达到了87.1%;而在使用烟雾能见度增强模块后,查准率提升到90.9%。可见,所提方法具有较高的森林火灾烟雾检测准确率。 展开更多
关键词 森林火灾烟雾检测 YOLOv8 GD机制 Enhanced-SPPF 能见度增强
在线阅读 下载PDF
融合路径与子图特征的知识图谱多跳推理模型 被引量:1
5
作者 李瑞 李贯峰 +1 位作者 胡德洲 高文馨 《计算机应用》 北大核心 2025年第1期32-39,共8页
针对知识推理模型在捕获实体之间的复杂语义特征方面难以捕捉多层次语义信息,同时未考虑单一路径的可解释性对正确答案的影响权重不同等问题,提出一种融合路径与子图特征的知识图谱(KG)多跳推理模型PSHAM(Hierarchical Attention Model ... 针对知识推理模型在捕获实体之间的复杂语义特征方面难以捕捉多层次语义信息,同时未考虑单一路径的可解释性对正确答案的影响权重不同等问题,提出一种融合路径与子图特征的知识图谱(KG)多跳推理模型PSHAM(Hierarchical Attention Model fusing Path-Subgraph features)。PS-HAM将实体邻域信息与连接路径信息进行融合,并针对不同路径探索多粒度的特征。首先,使用路径级特征提取模块提取每个实体对之间的连接路径,并采用分层注意力机制捕获不同粒度的信息,且将这些信息作为路径级的表示;其次,使用子图特征提取模块通过关系图卷积网络(RGCN)聚合实体的邻域信息;最后,使用路径-子图特征融合模块对路径级与子图级特征向量进行融合,以实现融合推理。在两个公开数据集上进行实验的结果表明,PS-HAM在指标平均倒数秩(MRR)和Hit@k(k=1,3,10)上的性能均存在有效提升。对于指标MRR,与MemoryPath模型相比,PS-HAM在FB15k-237和WN18RR数据集上分别提升了1.5和1.2个百分点。同时,对子图跳数进行的参数验证的结果表明,PS-HAM在两个数据集上都在子图跳数在3时推理效果达到最佳。 展开更多
关键词 知识图谱 多跳推理 子图特征 路径提取 特征融合
在线阅读 下载PDF
基于Transformer和门控循环单元的肽序列理论串联质谱图预测方法
6
作者 何长久 杨婧涵 +5 位作者 周丕宇 边昕烨 吕明明 董迪 付岩 王海鹏 《计算机应用》 CSCD 北大核心 2024年第12期3958-3964,共7页
针对现有理论串联质谱图预测仅限于预测b、y主干碎片离子以及单一模型难以捕捉肽序列复杂关系的问题,提出一种基于Transformer和门控循环单元(GRU)的肽序列理论串联质谱图预测方法,名为DeepCollider。首先,通过自注意力机制和长距离依... 针对现有理论串联质谱图预测仅限于预测b、y主干碎片离子以及单一模型难以捕捉肽序列复杂关系的问题,提出一种基于Transformer和门控循环单元(GRU)的肽序列理论串联质谱图预测方法,名为DeepCollider。首先,通过自注意力机制和长距离依赖关系,使用Transformer和GRU结合的深度学习架构增强对肽序列与碎片离子强度关系的建模能力;其次,与现有方法编码肽序列预测所有b、y主干离子不同,使用碎裂标志位标记肽序列的碎裂位点,从而可针对特定碎裂位点进行编码并预测相应的碎片离子;最后,为了计算预测谱图与实验谱图之间的相似度,使用皮尔逊相关系数(PCC)和平均绝对误差(MAE)作为评测指标。实验结果表明,与现有的仅限预测b、y主干碎片离子的方法(如pDeep和Prosit方法)相比,DeepCollider在PCC和MAE指标上均有优势,PCC值提升了0.15,MAE值降低了0.005。可见,DeepCollider不仅可以预测b、y、a主干离子及其相应的失水失氨中性丢失离子,还可以进一步提高理论谱图预测的谱峰覆盖度和相似性。 展开更多
关键词 理论质谱图预测 肽序列 碎片离子强度 蛋白质组学 深度学习
在线阅读 下载PDF
基于四叉树先验辅助的多视图立体方法
7
作者 胡立华 李小平 +1 位作者 胡建华 张素兰 《计算机应用》 CSCD 北大核心 2024年第11期3556-3564,共9页
基于PatchMatch的多视图立体(MVS)方法依据输入多幅图像估计场景的深度,目前已应用于大规模场景三维重建。然而,由于特征匹配不稳定、仅依赖光度一致性不可靠等原因,现有方法在弱纹理区域的深度估计准确性和完整性较低。针对上述问题,... 基于PatchMatch的多视图立体(MVS)方法依据输入多幅图像估计场景的深度,目前已应用于大规模场景三维重建。然而,由于特征匹配不稳定、仅依赖光度一致性不可靠等原因,现有方法在弱纹理区域的深度估计准确性和完整性较低。针对上述问题,提出一种基于四叉树先验辅助的MVS方法。首先,利用图像像素值获得局部纹理;其次,基于自适应棋盘网格采样的块匹配多视图立体视觉方法(ACMH)获得粗略的深度图,结合弱纹理区域中的结构信息,采用四叉树分割生成先验平面假设;再次,融合上述信息,设计一种新的多视图匹配代价函数,引导弱纹理区域得到最优深度假设,进而提高立体匹配的准确性;最后,在ETH3D、Tanks and Temples和中国科学院古建筑数据集上与多种现有的传统MVS方法进行对比实验。结果表明所提方法性能更优,特别是在ETH3D测试数据集中,当误差阈值为2 cm时,相较于当前先进的多尺度平面先验辅助方法(ACMMP),它的F1分数和完整性分别提高了1.29和2.38个百分点。 展开更多
关键词 多视图立体 深度估计 匹配代价 弱纹理区域 四叉树先验
在线阅读 下载PDF
基于分解和频域特征提取的多变量长时间序列预测模型 被引量:2
8
作者 范艺扬 张洋 +2 位作者 曾尚 曾渝 付茂栗 《计算机应用》 CSCD 北大核心 2024年第11期3442-3448,共7页
针对现有基于Transformer的多变量长时间序列预测(MLTSF)模型主要从时域中提取特征,难以直接从长时间序列分散的时间点中找出可靠依赖关系的问题,提出一种新的基于分解和频域特征提取的模型。首先,提出基于频域的周期项-趋势项的分解方... 针对现有基于Transformer的多变量长时间序列预测(MLTSF)模型主要从时域中提取特征,难以直接从长时间序列分散的时间点中找出可靠依赖关系的问题,提出一种新的基于分解和频域特征提取的模型。首先,提出基于频域的周期项-趋势项的分解方法,以降低分解过程的时间复杂度;其次,在利用周期项-趋势项分解提取序列趋势性特征的基础上,利用基于Gabor变换进行频域特征提取的Transformer网络捕捉周期性的依赖,提高预测的稳定性和鲁棒性。在5个基准数据集上的实验结果显示,与现有的先进方法相比,所提模型在MLTSF上的均方误差(MSE)平均减小了7.6%,最多减小了18.9%,有效提升了预测精度。 展开更多
关键词 多变量长时间序列预测 频域特征提取 GABOR变换 TRANSFORMER 时间序列 深度学习
在线阅读 下载PDF
基于依赖增强的分层抽象语法树的代码克隆检测 被引量:2
9
作者 万泽轩 谢春丽 +1 位作者 吕泉润 梁瑶 《计算机应用》 CSCD 北大核心 2024年第4期1259-1268,共10页
在软件工程领域,基于语义相似的代码克隆检测方法可以降低软件维护的成本并预防系统漏洞,抽象语法树(AST)作为典型的代码抽象表征形式,已成功应用于多种程序语言的代码克隆检测任务,然而现有工作主要利用原始AST提取代码的语义,没有深... 在软件工程领域,基于语义相似的代码克隆检测方法可以降低软件维护的成本并预防系统漏洞,抽象语法树(AST)作为典型的代码抽象表征形式,已成功应用于多种程序语言的代码克隆检测任务,然而现有工作主要利用原始AST提取代码的语义,没有深入挖掘AST中的深层语义和结构信息。针对上述问题,提出一种基于依赖增强的分层抽象语法树(DEHAST)的代码克隆检测方法。首先,对AST进行分层处理,将AST划分得到不同的语义层次;其次,为AST的不同层次添加相应的依赖增强边构建DEHAST,将简单的AST变成具有更丰富程序语义的异构图;最后,使用图匹配网络(GMN)模型检测异构图的相似性,实现代码克隆检测。在BigCloneBench和Google Code Jam两个数据集上的实验结果显示,DEHAST能够检测100%的Type-1和Type-2代码克隆、99%的Type-3代码克隆和97%的Type-4代码克隆;与基于树的方法ASTNN(AST-based Neural Network)相比,F1分数均提高了4个百分点,验证了DEHAST可以较好地完成代码语义克隆检测。 展开更多
关键词 代码克隆检测 语义克隆 抽象语法树 深度学习 图匹配网络
在线阅读 下载PDF
融合转移概率矩阵的多阶最近邻图聚类算法
10
作者 徐童童 解滨 +1 位作者 张春昊 张喜梅 《计算机应用》 CSCD 北大核心 2024年第5期1527-1538,共12页
聚类是根据样本之间的相似性将数据集划分为多个类簇。现有的大多数聚类方法都存在两个挑战:一方面,在定义样本间相似性时往往没有考虑样本的空间分布结构,无法构建稳定的相似度矩阵;另一方面,图聚类构造的样本图结构过于复杂,计算成本... 聚类是根据样本之间的相似性将数据集划分为多个类簇。现有的大多数聚类方法都存在两个挑战:一方面,在定义样本间相似性时往往没有考虑样本的空间分布结构,无法构建稳定的相似度矩阵;另一方面,图聚类构造的样本图结构过于复杂,计算成本较高。为解决这两个问题,提出融合转移概率矩阵的多阶最近邻图聚类算法(MNNGC)。首先,综合样本的近邻关系和空间分布结构,将共享近邻定义的相似度进行趋密性加权,得到节点间的趋密性亲和矩阵;其次,利用节点间多阶概率转移预测非邻接点的关联程度,并通过融合多阶转移概率矩阵得到稳定的节点间亲和矩阵;再次,为进一步增强图局部结构,重新构建节点的多阶最近邻图,并对多阶最近邻图的局部结构分层聚类;最后,优化了边缘点分配策略。定位实验结果表明,MNNGC在合成数据集上的准确率(Acc)均优于对比算法,且在8个UCI数据集上的Acc为最大值。其中在Compound数据集上,MNNGC的Acc、调整互信息(AMI)、调整兰德指数(ARI)和FM指数(FMI)相较于基于局部密度峰值的谱聚类(LDP-SC)算法分别提高38.6、27.2、45.4、35.1个百分点。 展开更多
关键词 共享近邻 趋密性 转移概率 多阶最近邻 分层聚类
在线阅读 下载PDF
基于低秩分解和向量量化的深度网络压缩方法 被引量:1
11
作者 王东炜 刘柏辰 +2 位作者 韩志 王艳美 唐延东 《计算机应用》 CSCD 北大核心 2024年第7期1987-1994,共8页
随着人工智能的发展,深度神经网络成为多种模式识别任务中必不可少的工具,由于深度卷积神经网络(CNN)参数量巨大、计算复杂度高,将它部署到计算资源和存储空间受限的边缘计算设备上成为一项挑战。因此,深度网络压缩成为近年来的研究热... 随着人工智能的发展,深度神经网络成为多种模式识别任务中必不可少的工具,由于深度卷积神经网络(CNN)参数量巨大、计算复杂度高,将它部署到计算资源和存储空间受限的边缘计算设备上成为一项挑战。因此,深度网络压缩成为近年来的研究热点。低秩分解与向量量化是深度网络压缩中重要的两个研究分支,其核心思想都是通过找到原网络结构的一种紧凑型表达,从而降低网络参数的冗余程度。通过建立联合压缩框架,提出一种基于低秩分解和向量量化的深度网络压缩方法——可量化的张量分解(QTD)。该方法能够在网络低秩结构的基础上实现进一步的量化,从而得到更大的压缩比。在CIFAR-10数据集上对经典ResNet和该方法进行验证的实验结果表明,QTD能够在准确率仅损失1.71个百分点的情况下,将网络参数量压缩至原来的1%。而在大型数据集ImageNet上把所提方法与基于量化的方法PQF(Permute,Quantize,and Fine-tune)、基于低秩分解的方法TDNR(Tucker Decomposition with Nonlinear Response)和基于剪枝的方法CLIP-Q(Compression Learning by In-parallel Pruning-Quantization)进行比较与分析的实验结果表明,QTD能够在相同压缩范围下实现更好的分类准确率。 展开更多
关键词 卷积神经网络 张量分解 向量量化 模型压缩 图像分类
在线阅读 下载PDF
基于改进Res-UNet的昼夜地基云图分割网络 被引量:1
12
作者 王铂越 李英祥 钟剑丹 《计算机应用》 CSCD 北大核心 2024年第4期1310-1316,共7页
针对昼夜地基云图在分割中细节信息丢失、分割精度低等问题,提出一种基于改进Res-UNet(Residual network-UNetwork)的昼夜地基云图分割网络CloudRes-UNet(Cloud ResNet-UNetwork),整体采用编码器-解码器的网络结构。首先,编码器使用ResN... 针对昼夜地基云图在分割中细节信息丢失、分割精度低等问题,提出一种基于改进Res-UNet(Residual network-UNetwork)的昼夜地基云图分割网络CloudRes-UNet(Cloud ResNet-UNetwork),整体采用编码器-解码器的网络结构。首先,编码器使用ResNet50提取特征,增强特征提取能力;其次,设计多级特征提取(Multi-Stage)模块,该模块结合分组卷积、膨胀卷积和通道打乱这3种技巧,获取高强度语义信息;再次,加入高效通道注意力(ECA‑Net)模块,在通道维度上聚焦重要信息,加强对地基云图中云区域的关注,提高分割精度;最后,解码器使用双线性插值对特征进行上采样,提高分割图像的清晰度并减少目标和位置信息丢失。实验结果表明,与当前基于深度学习表现较好的地基云图分割网络(Cloud-UNet)相比,CloudRes-UNet在昼夜地基云图分割数据集上的分割准确率提升了1.5个百分点,平均交并比(MIoU)上升了1.4个百分点,更准确地获取了云量信息,对天气预报、气候研究和光伏发电等方面具有积极意义。 展开更多
关键词 地基云图 语义分割 深度学习 高效通道注意力网络 ResNet50 Res-UNet
在线阅读 下载PDF
基于自适应p持续的移动自组网信道接入和资源分配算法
13
作者 秦鑫彤 宋政育 +3 位作者 侯天为 王飞越 孙昕 黎伟 《计算机应用》 CSCD 北大核心 2024年第3期863-868,共6页
针对基于p持续的移动自组网(MANET)信道接入和资源分配问题,提出一种具有低复杂度的自适应信道接入和资源分配算法。首先,考虑到自组网无中心分布式组网特点,以每个节点的信道利用率最大化为目标建立优化问题;其次将该问题建模为马尔可... 针对基于p持续的移动自组网(MANET)信道接入和资源分配问题,提出一种具有低复杂度的自适应信道接入和资源分配算法。首先,考虑到自组网无中心分布式组网特点,以每个节点的信道利用率最大化为目标建立优化问题;其次将该问题建模为马尔可夫决策过程并定义状态、动作和奖励函数;最后基于策略梯度训练网络参数,联合优化竞争概率、优先级增长因子以及通信节点数量。仿真实验结果表明,所提算法可以显著提高p-持续载波侦听多址接入(CSMA)协议的性能,与固定竞争概率和p值预定义的方案相比,所提算法的信道利用率提高了45%和17%;此外,当节点数量小于35时,所提算法优于固定接入节点数量的方案。同时,在节点数据包到达率较高时,所提算法可以充分利用信道,减少时隙资源浪费。 展开更多
关键词 移动自组网 载波侦听多址接入 深度强化学习 信道利用率 资源分配
在线阅读 下载PDF
基于卷积神经网络与Transformer并行的医学图像配准模型 被引量:1
14
作者 赵欣 李鑫杰 +2 位作者 徐健 刘步云 毕祥 《计算机应用》 CSCD 北大核心 2024年第12期3915-3921,共7页
医学图像配准模型旨在建立图像间解剖位置的对应关系。传统的图像配准方法通过不断迭代获取形变场,耗费时间长且精度不高。深度神经网络不仅实现了端到端的形变场生成,加快了形变场的生成,而且进一步提升了图像配准的精度。针对目前的... 医学图像配准模型旨在建立图像间解剖位置的对应关系。传统的图像配准方法通过不断迭代获取形变场,耗费时间长且精度不高。深度神经网络不仅实现了端到端的形变场生成,加快了形变场的生成,而且进一步提升了图像配准的精度。针对目前的深度学习配准模型均采用单一的卷积神经网络(CNN)或Transformer架构,无法充分发挥CNN与Transformer结合的优势导致配准精度不足,以及图像配准后无法有效保持原始拓扑结构等问题,提出一种基于CNN与Transformer并行的医学图像配准模型PPCTNet(Parallel Processing of CNN and Transformer Network)。首先,选用目前配准精度优秀的Swin Transformer和极轻量化的CNN——LOCV-Net(Lightweight attenti On-based Con Volutional Network)构建模型;其次,设计融合策略充分融合Swin Transformer与LOCV-Net提取的特征信息,使模型不仅拥有CNN的局部特征提取能力和Transformer的长距离依赖能力,还兼具轻量化的优势;最后,基于脑部磁共振成像(MRI)数据集,比较PPCTNet与10种经典图像配准模型。结果表明,相较于目前优秀的配准模型Trans Morph(hybrid Transformer-Conv Net network for image registration),PPCTNet的最高配准精度提高了0.5个百分点,且形变场的折叠率下降了1.56个百分点,维持了配准图像的拓扑结构。此外,PPCTNet的参数量比Trans Morph下降了10.39×10^(6),计算量下降了278×10^(9),体现了PPCTNet的轻量化优势。 展开更多
关键词 医学图像 图像配准 卷积神经网络 Transformer架构 轻量化卷积
在线阅读 下载PDF
基于编码-解码网络的大容量鲁棒图像隐写方案 被引量:2
15
作者 董炜娜 刘佳 +2 位作者 潘晓中 陈立峰 孙文权 《计算机应用》 CSCD 北大核心 2024年第3期772-779,共8页
针对基于编码-解码网络的大容量隐写模型存在鲁棒性弱、无法抵抗噪声攻击和信道压缩的问题,提出一种基于编码-解码网络的大容量鲁棒图像隐写方案。首先,设计了基于密集连接卷积网络(DenseNet)的编码器、解码器和判别器,编码器将秘密信... 针对基于编码-解码网络的大容量隐写模型存在鲁棒性弱、无法抵抗噪声攻击和信道压缩的问题,提出一种基于编码-解码网络的大容量鲁棒图像隐写方案。首先,设计了基于密集连接卷积网络(DenseNet)的编码器、解码器和判别器,编码器将秘密信息和载体图像联合编码成隐写图像,解码器提取秘密信息,判别器用于区分载体图像和隐写图像。在编码器和解码器中间加入噪声层,采用Dropout、JPEG压缩、高斯模糊、高斯噪声和椒盐噪声模拟真实环境下的各类噪声攻击,编码器输出的隐写图像经过不同种类的噪声处理,再由解码器解码;通过训练模型,解码器能够对噪声处理后的隐写图像提取秘密信息,以抵抗噪声攻击。实验结果表明,所提方案在360×360像素的图像上隐写容量达到0.45~0.95 bpp,与次优的鲁棒隐写方案相比,相对嵌入容量提升了2.04倍;解码准确率可达0.72~0.97;与未添加噪声层的隐写方案相比,平均解码准确率提高了44个百分点。所提方案在保证高嵌入量、高编码图片质量的同时具有更强的抗噪声攻击能力。 展开更多
关键词 深度学习 信息隐藏 图像隐写 大容量 鲁棒性 编码-解码网络 对抗性训练
在线阅读 下载PDF
基于改进区域提议网络和特征聚合小样本目标检测方法
16
作者 付可意 王高才 邬满 《计算机应用》 CSCD 北大核心 2024年第12期3790-3797,共8页
在现有的小样本目标检测中,区域提议网络(RPN)通常是在基类数据上训练以生成新类候选框;然而新类数据相较于基类更稀缺,在引入时可能产生与目标物不同的复杂背景,导致RPN将背景误认为前景,遗漏高交并比(IoU)值候选框。针对上述问题,提... 在现有的小样本目标检测中,区域提议网络(RPN)通常是在基类数据上训练以生成新类候选框;然而新类数据相较于基类更稀缺,在引入时可能产生与目标物不同的复杂背景,导致RPN将背景误认为前景,遗漏高交并比(IoU)值候选框。针对上述问题,提出一种基于改进RPN和特征聚合小样本目标检测方法(IFA-FSOD)。首先,基于RPN进行改进,即通过在RPN中设计一个基于度量的非线性分类器,计算骨干网络提取的特征和新类特征之间的相似度,以提高对新类候选框的召回率,从而筛选高IoU候选框;其次,在感兴趣区域对齐(RoI Align)中引入基于注意力机制的特征聚合模块(FAM),并通过设计不同尺度的网格,获取更全面的信息和特征表示,从而缓解因尺度不同引起的特征信息缺失。实验结果表明,相较于QA-FewDet(Query Adaptive Few-shot object Detection)方法,IFA-FSOD方法在PASCAL VOC数据集的新类上的Novel Set 3中的10-shot下的新类别平均精度(50%IoU)(nAP50)提升了4.5个百分点;相较于FsDetView(Few-shot object Detection and Viewpoint estimation)方法,在10-shot和30-shot设置下,IFA-FSOD方法在COCO数据集的新类上的平均精度均值(mAP)分别提升了0.2和0.8个百分点。可见改进RPN和特征聚合(IFA)能有效提高在小样本情况下对目标类别的检测性能,并解决高IoU值候选框遗漏和特征信息捕捉不全的问题。 展开更多
关键词 小样本目标检测 基于度量 区域提议网络 非线性分类器 特征聚合
在线阅读 下载PDF
改进萤火虫群算法协同差分隐私的干扰轨迹发布
17
作者 彭鹏 倪志伟 +1 位作者 朱旭辉 陈千 《计算机应用》 CSCD 北大核心 2024年第2期496-503,共8页
针对历史轨迹加噪发布干扰轨迹时数据集的冗余问题和轨迹形状相似带来的隐私泄露风险,提出轨迹数据先约简后泛化再进行差分隐私加噪的基于改进萤火虫群优化求解的干扰轨迹发布保护机制(IGSO-SDTP)。首先,基于位置显著点约简历史轨迹数据... 针对历史轨迹加噪发布干扰轨迹时数据集的冗余问题和轨迹形状相似带来的隐私泄露风险,提出轨迹数据先约简后泛化再进行差分隐私加噪的基于改进萤火虫群优化求解的干扰轨迹发布保护机制(IGSO-SDTP)。首先,基于位置显著点约简历史轨迹数据集;其次,结合k⁃匿名和差分隐私对简化后的轨迹数据集分别进行泛化和加噪;最后,设计了兼顾距离误差和轨迹相似性的加权距离,并以加权距离为评价指标,基于改进萤火虫群优化(IGSO)算法求解加权距离小的干扰轨迹。在多个数据集上的实验结果表明,与RD(Differential privacy for Raw trajectory data)、SDTP(Trajectory Protection of Simplification and Differential privacy)、LIC(Linear Index Clustering algorithm)、DPKTS(Differential Privacy based on K-means Trajectory shape Similarity)相比,IGSO-SDTP方法得到的加权距离分别降低了21.94%、9.15%、14.25%、10.55%,说明所提方法发布的干扰轨迹可用性和稳定性更好。 展开更多
关键词 干扰轨迹 差分隐私 改进萤火虫群优化算法 加权距离 显著点判断
在线阅读 下载PDF
基于多粒度语义融合的信息检索方法 被引量:3
18
作者 赵征宇 罗景 涂新辉 《计算机应用》 CSCD 北大核心 2024年第6期1775-1780,共6页
信息检索(IR)是一种通过特定的技术和方法组织、处理信息,以满足用户的信息需求的过程。近年来,基于预训练模型的稠密检索方法取得了巨大的成功;然而,这些方法只利用了文本和词语的向量表征计算查询与文档相关度,忽略了它们短语层面间... 信息检索(IR)是一种通过特定的技术和方法组织、处理信息,以满足用户的信息需求的过程。近年来,基于预训练模型的稠密检索方法取得了巨大的成功;然而,这些方法只利用了文本和词语的向量表征计算查询与文档相关度,忽略了它们短语层面间的语义信息。针对该问题,提出一种名为MSIR(Multi-Scale IR)的IR方法。所提方法通过融合查询与文档中多种不同粒度的语义信息提高IR性能。首先,构建查询和文档中词语、短语和文本这3个粒度的语义单元;其次,利用预训练模型对这3个语义单元分别进行编码获得它们的语义表征;最后,利用语义表征计算查询和文档相关度。在Corvid-19、TREC2019和Robust04这3个不同大小的经典数据集上进行了对比实验。与ColBERT(ranking model based on Contextualized late interaction over BERT(Bidirectional Encoder Representation from Transformers))相比,MSIR在Robust04数据集的P@10、P@20、NDCG@10和NDCG@20指标上均实现了约8%的提升,同时在Corvid-19和TREC2019数据集上也取得了一定的改进。实验结果表明,MSIR能够成功融合多种语义粒度,提升检索精度。 展开更多
关键词 语义融合 信息检索 稠密检索 预训练模型 文本检索
在线阅读 下载PDF
基于知识蒸馏的不存储旧数据的类增量学习
19
作者 刘展阳 刘进锋 《计算机应用》 CSCD 北大核心 2024年第S2期12-17,共6页
以往的不存储旧数据的类增量学习方法虽然能通过模型反转等技术生成已学任务中的类别数据,但未能有效缓解模型的可塑性-稳定性困境,并且这些合成技术很容易忽略数据的多样性。针对以上问题,提出一种基于知识蒸馏的增量学习策略。首先,... 以往的不存储旧数据的类增量学习方法虽然能通过模型反转等技术生成已学任务中的类别数据,但未能有效缓解模型的可塑性-稳定性困境,并且这些合成技术很容易忽略数据的多样性。针对以上问题,提出一种基于知识蒸馏的增量学习策略。首先,采用局部交叉熵损失促使模型学习新的类别知识;其次,引入基于输出特征的蒸馏组合,以减少对旧类别知识的遗忘;最后,使用基于关系特征的蒸馏,从而缓解模型在学习新类别表征与保留旧类别表征之间的冲突。而且,为了增加生成数据的多样性,在模型反转的基础上引入一个正则项,以防止生成的样本过于相似。实验结果表明,与基于关系引导表示学习的不存储旧数据的类增量学习(R-DFCIL)相比:在CIFAR-100数据集上,所提模型在5个任务和10个任务上的平均增量准确率分别提高了0.25和0.18个百分点;在Tiny-ImageNet数据集上,相应的提升分别为0.21和0.07个百分点。此外,所提模型不需要额外的分类器微调,且所提多样性正则项为不存储旧数据的类增量学习提供了一种改进方向。 展开更多
关键词 知识蒸馏 类增量学习 模型反转 多样性正则 深度学习
在线阅读 下载PDF
基于深度自回归模型的近似查询处理方法
20
作者 岑黎彬 李靖东 +1 位作者 林淳波 王晓玲 《计算机应用》 CSCD 北大核心 2023年第7期2034-2039,共6页
聚合函数的近似查询处理(AQP)是近年来数据库领域的研究热点。针对现有的近似查询技术存在查询响应时间长、存储开销大、不支持多谓词查询等问题,提出一种基于深度自回归模型的AQP方法DeepAQP(Deep Approximate Query Processing),利用... 聚合函数的近似查询处理(AQP)是近年来数据库领域的研究热点。针对现有的近似查询技术存在查询响应时间长、存储开销大、不支持多谓词查询等问题,提出一种基于深度自回归模型的AQP方法DeepAQP(Deep Approximate Query Processing),利用深度自回归模型对表中多列数据的联合概率分布进行学习和建模,以估计给定查询的谓词选择度和目标列概率分布,以促进单表下多谓词聚合函数近似查询请求的有效处理。在TPC-H和TPC-DS数据集上进行实验,结果表明,与基于采样的VerdictDB方法相比,DeepAQP在查询响应时间和存储空间开销上均降低了2到3个数量级;与基于传统机器学习模型的DBEst++方法相比,DeepAQP的查询响应时间降低了1个数量级,显著降低了模型训练耗时,并且可以处理DBEst++所不支持的多谓词查询请求。可见,DeepAQP兼顾了查询精度和速度,并显著降低了算法在训练和存储上的开销。 展开更多
关键词 近似查询处理 自回归模型 多谓词查询 深度学习 聚合函数
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部