Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently opera...Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently operational in orbit.The data obtained from Fengyun satellites is employed in a multitude of applications,including weather forecasting,meteorological disaster prevention and reduction,climate change,global environmental monitoring,and space weather.These data products and services are made available to the global community,resulting in tangible social and economic benefits.In 2023,two Fengyun meteorological satellites were successfully launched.This report presents an overview of the two recently launched Fengyun satellites and currently in orbit Fengyun satellites,including an evaluation of their remote sensing instruments since 2022.Additionally,it addresses the subject of Fengyun satellite data archiving,data services,application services,international cooperation,and supporting activities.Furthermore,the development prospects have been outlined.展开更多
Near-Earth Asteroids(NEA)impose potential major disaster to humanity.Planetary defense is an inevitable requirement for the survival of human civilization.In recent years,China has made rapid progress in planetary def...Near-Earth Asteroids(NEA)impose potential major disaster to humanity.Planetary defense is an inevitable requirement for the survival of human civilization.In recent years,China has made rapid progress in planetary defense research,which has won the attention of the government and attracted more and more scholars and organizations.This paper summarizes the research progress in planetary defense in China in recent years,including the fireball events in China,academic activities and policy planning,monitoring and warning technology,onorbit defense technology,impact hazard assessment,international cooperation and science popularization.展开更多
China’s efforts to develop Fengyun meteorological satellites have made major strides over the past 50 years,with the polar and geostationary meteorological satellite series achieving continuously stable operation to ...China’s efforts to develop Fengyun meteorological satellites have made major strides over the past 50 years,with the polar and geostationary meteorological satellite series achieving continuously stable operation to persistently provide data and product services globally.By the end of 2021,19 Chinese self-developed Fengyun meteorological satellites have been launched successfully.Seven of them are in operation at present,the data and products are widely applied to weather analysis,numerical weather forecasting and climate prediction,as well as environment and disaster monitoring.Since the last COSPAR report,FY-4B,the first new-generation operational geostationary satellite,and FY-3E,the first early-morning orbit satellite in China’s polar-orbiting meteorological satellite family have been launched in 2021.The characteristics of the two latest satellites and the instruments onboard are addressed in this report.The status of current Fengyun Satellites,product and data service and international cooperation and supporting activities has been introduced as well.展开更多
To follow up the last report two years ago,what happened from 2020 to 2022 deserves specially mentioning:CHASE was successfully launched on 14 October 2021;ASO-S will finish soon its Phase-D study and is scheduled for...To follow up the last report two years ago,what happened from 2020 to 2022 deserves specially mentioning:CHASE was successfully launched on 14 October 2021;ASO-S will finish soon its Phase-D study and is scheduled for launch in October 2022;four solar mission candidates are being undertaken the engineering project evaluations;three solar mission proposals are being undertaken the background project evaluations;there are also quite a number of pre-study space solar physics projects getting either newly supported or finished.This paper describes in brief the status of all these related projects.展开更多
地磁暴发生时,电离层会有偏离平均水平的强烈扰动.基于全球电离层TEC及其时间变化率ROTI(Rate of TEC Index)数据,对2014年8月一次中等强度磁暴期间的全球电离层影响进行了分析,探讨了磁暴所引发电离层暴的可能机制.研究发现,本次磁暴...地磁暴发生时,电离层会有偏离平均水平的强烈扰动.基于全球电离层TEC及其时间变化率ROTI(Rate of TEC Index)数据,对2014年8月一次中等强度磁暴期间的全球电离层影响进行了分析,探讨了磁暴所引发电离层暴的可能机制.研究发现,本次磁暴伴随有明显的电离层暴效应.磁暴期间:南半球电离层以正相暴为主,北半球电离层暴则整体表现为短暂正相暴后长时间强的负相暴;电离层在北半球的下降比南半球强,并且这种下降持续了约一周时间;低纬区域电离层变化幅度明显小于中纬区域,高纬区域则主要表现为负暴效应;赤道北驼峰出现了明显的南移现象,直至磁赤道两侧双驼峰结构消失.对磁暴期间三个不同扇区的电离层ROTI变化的分析表明:欧洲—非洲扇区磁暴前有电离层闪烁发生,磁暴发生后消失,而东亚—澳大利亚及美洲扇区则无此现象出现.研究结果表明,此次磁暴期间的电离层变化存在明显的时间和空间差异.展开更多
基金Supported by National Natural Science Foundation of China(42274217)。
文摘Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently operational in orbit.The data obtained from Fengyun satellites is employed in a multitude of applications,including weather forecasting,meteorological disaster prevention and reduction,climate change,global environmental monitoring,and space weather.These data products and services are made available to the global community,resulting in tangible social and economic benefits.In 2023,two Fengyun meteorological satellites were successfully launched.This report presents an overview of the two recently launched Fengyun satellites and currently in orbit Fengyun satellites,including an evaluation of their remote sensing instruments since 2022.Additionally,it addresses the subject of Fengyun satellite data archiving,data services,application services,international cooperation,and supporting activities.Furthermore,the development prospects have been outlined.
基金Supported by the Beijing Municipal Science and Technology Commission(Z181100002918004)the Strategic Priority Program on Space Science(XDA15014900)the Civil Aerospace Preliminary Research Project(KJSP2020020101,CAS)。
文摘Near-Earth Asteroids(NEA)impose potential major disaster to humanity.Planetary defense is an inevitable requirement for the survival of human civilization.In recent years,China has made rapid progress in planetary defense research,which has won the attention of the government and attracted more and more scholars and organizations.This paper summarizes the research progress in planetary defense in China in recent years,including the fireball events in China,academic activities and policy planning,monitoring and warning technology,onorbit defense technology,impact hazard assessment,international cooperation and science popularization.
基金Supported by the National Key Research and Development Program of China(2018YFB0504900,2018YFB0504905)the National Project on Fengyun Meteorological Satellite Development。
文摘China’s efforts to develop Fengyun meteorological satellites have made major strides over the past 50 years,with the polar and geostationary meteorological satellite series achieving continuously stable operation to persistently provide data and product services globally.By the end of 2021,19 Chinese self-developed Fengyun meteorological satellites have been launched successfully.Seven of them are in operation at present,the data and products are widely applied to weather analysis,numerical weather forecasting and climate prediction,as well as environment and disaster monitoring.Since the last COSPAR report,FY-4B,the first new-generation operational geostationary satellite,and FY-3E,the first early-morning orbit satellite in China’s polar-orbiting meteorological satellite family have been launched in 2021.The characteristics of the two latest satellites and the instruments onboard are addressed in this report.The status of current Fengyun Satellites,product and data service and international cooperation and supporting activities has been introduced as well.
基金Supported by Strategic Priority Research Program of the Chinese Academy of Sciences(XDA15052200)National Natural Science Foundation of China(11921003,U1931138)。
文摘To follow up the last report two years ago,what happened from 2020 to 2022 deserves specially mentioning:CHASE was successfully launched on 14 October 2021;ASO-S will finish soon its Phase-D study and is scheduled for launch in October 2022;four solar mission candidates are being undertaken the engineering project evaluations;three solar mission proposals are being undertaken the background project evaluations;there are also quite a number of pre-study space solar physics projects getting either newly supported or finished.This paper describes in brief the status of all these related projects.
文摘地磁暴发生时,电离层会有偏离平均水平的强烈扰动.基于全球电离层TEC及其时间变化率ROTI(Rate of TEC Index)数据,对2014年8月一次中等强度磁暴期间的全球电离层影响进行了分析,探讨了磁暴所引发电离层暴的可能机制.研究发现,本次磁暴伴随有明显的电离层暴效应.磁暴期间:南半球电离层以正相暴为主,北半球电离层暴则整体表现为短暂正相暴后长时间强的负相暴;电离层在北半球的下降比南半球强,并且这种下降持续了约一周时间;低纬区域电离层变化幅度明显小于中纬区域,高纬区域则主要表现为负暴效应;赤道北驼峰出现了明显的南移现象,直至磁赤道两侧双驼峰结构消失.对磁暴期间三个不同扇区的电离层ROTI变化的分析表明:欧洲—非洲扇区磁暴前有电离层闪烁发生,磁暴发生后消失,而东亚—澳大利亚及美洲扇区则无此现象出现.研究结果表明,此次磁暴期间的电离层变化存在明显的时间和空间差异.