Recently,foamed polymers have been widely used in the repair of underground engineering disasters by grouting(trenchless technology)due to controllable gelation time and self-expansion.However,the grouting process bec...Recently,foamed polymers have been widely used in the repair of underground engineering disasters by grouting(trenchless technology)due to controllable gelation time and self-expansion.However,the grouting process becomes more complicated due to the complex geological conditions and the self-expansion of slurry.Therefore,this paper adopts a self-made visual experimental device with peripheral pressure and water plugging rate(WPR)monitoring functions to study the influence of main influencing parameters(particle size distribution,grouting amount and dynamic water pump pressure(DWPP))on the spatiotemporal distribution of slurry WPR and diffusion dynamic response(peripheral pressure).The results show that:When grouting amount is 563 g and DWPP is 0.013 MPa,the expansion force of the slurry in the diffusion process is dominant and can significantly change the local sand and gravel skeleton structure.When grouting amount is 563 g,DWPP is 0.013 MPa,and particle size distribution type isⅢ,the flow time of the polymer is shortened,the pores of the gravel are rapidly blocked.Then,the peripheral pressure decreases rapidly with the increase of the distance,and the time to reach the inflection point WPR is shortened.The instantaneous blockage of the pores leads to the delayed transmission of flow field blockage information.展开更多
Non aqueous reactive polymer materials produced by the reaction of isocyanate and polyol have been widely used in infrastructure construction,which may be subjected to explosion loads during complex service conditions...Non aqueous reactive polymer materials produced by the reaction of isocyanate and polyol have been widely used in infrastructure construction,which may be subjected to explosion loads during complex service conditions.The blast response of composite materials is a crucial aspect for applications in engineering structures potentially subjected to extreme loadings.In this work,damage caused to rebar reinforced polymer slabs by surface explosive charges was studied experimentally and numerically.A total of 6 field tests were carried out to investigate the performances of the failure modes of rebar reinforced polymer slabs under contact and near-field explosions.The influence of explosive quantity(10-40 g)and stand-off distances(0-20 cm)at the damage modes were studied.The results show that the failure modes of rebar reinforced polymer slabs under near-field explosion mainly were bending and surface spalling,while under the impact of contact explosion,the failure modes were craters of the top surface,spalling of the bottom surface,and middle perforation.Furthermore,a detailed fully coupled model was developed and validated with the test data.The influences of explosive quantity and slab thickness on rebar reinforced polymer slabs under contact explosion were studied.Based on this,the calculation formula between breach diameter,explosive quantity,and slab thickness is fitted.展开更多
基金Project(2022YFC3801000)supported by the National Key Research and Development Program of ChinaProject(232300421064)supported by the Natural Science Foundation of Henan Province,China+1 种基金Project(241111322700)supported by the Key Research and Development Projects in Henan Province,ChinaProject(52008379)supported by the National Natural Science Foundation of China。
文摘Recently,foamed polymers have been widely used in the repair of underground engineering disasters by grouting(trenchless technology)due to controllable gelation time and self-expansion.However,the grouting process becomes more complicated due to the complex geological conditions and the self-expansion of slurry.Therefore,this paper adopts a self-made visual experimental device with peripheral pressure and water plugging rate(WPR)monitoring functions to study the influence of main influencing parameters(particle size distribution,grouting amount and dynamic water pump pressure(DWPP))on the spatiotemporal distribution of slurry WPR and diffusion dynamic response(peripheral pressure).The results show that:When grouting amount is 563 g and DWPP is 0.013 MPa,the expansion force of the slurry in the diffusion process is dominant and can significantly change the local sand and gravel skeleton structure.When grouting amount is 563 g,DWPP is 0.013 MPa,and particle size distribution type isⅢ,the flow time of the polymer is shortened,the pores of the gravel are rapidly blocked.Then,the peripheral pressure decreases rapidly with the increase of the distance,and the time to reach the inflection point WPR is shortened.The instantaneous blockage of the pores leads to the delayed transmission of flow field blockage information.
基金supported by the National Natural Science Foundation of China(Grant Nos.52009126,51939008)Foundation of Hubei Key Laboratory of Blasting Engineering(Grant No.BL202104)First-class Project Special Funding of Yellow River Laboratory(No.YRL22IR08)。
文摘Non aqueous reactive polymer materials produced by the reaction of isocyanate and polyol have been widely used in infrastructure construction,which may be subjected to explosion loads during complex service conditions.The blast response of composite materials is a crucial aspect for applications in engineering structures potentially subjected to extreme loadings.In this work,damage caused to rebar reinforced polymer slabs by surface explosive charges was studied experimentally and numerically.A total of 6 field tests were carried out to investigate the performances of the failure modes of rebar reinforced polymer slabs under contact and near-field explosions.The influence of explosive quantity(10-40 g)and stand-off distances(0-20 cm)at the damage modes were studied.The results show that the failure modes of rebar reinforced polymer slabs under near-field explosion mainly were bending and surface spalling,while under the impact of contact explosion,the failure modes were craters of the top surface,spalling of the bottom surface,and middle perforation.Furthermore,a detailed fully coupled model was developed and validated with the test data.The influences of explosive quantity and slab thickness on rebar reinforced polymer slabs under contact explosion were studied.Based on this,the calculation formula between breach diameter,explosive quantity,and slab thickness is fitted.