Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is propo...Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is proposed as a substituting method.By absorbing high energy of the 1064 nm pulsed laser, the paint is vaporized quickly.The ablated debris is then collected by using a suction pump.Initial metal surface of the steel is exposed when laser beam irradiates perpendicularly and scans over it.The cleaned surface fulfills the requirements of surface preparation standards ISO 8501 of SA2.The adhesion is further characterized with pull-off test after carrying out painting with Jotamastic 87 aluminum paint.The repainting can be embedded onto the laser cleaned surface to bond much more tightly.The excellent adhesion strength of 20 MPa between repainted coating and the substrate is achieved, which is higher than what is required by shipyards applications.展开更多
Large threshold voltage and small on-state current are the main limitations of the normal tunneling field effect transistor (TFET). In this paper, a novel TFET with gate-controlled P+N+N+ structure based on partially ...Large threshold voltage and small on-state current are the main limitations of the normal tunneling field effect transistor (TFET). In this paper, a novel TFET with gate-controlled P+N+N+ structure based on partially depleted GeOI (PD-GeOI) substrate is proposed. With the buried P+-doped layer (BP layer) introduced under P+N+N+ structure, the proposed device behaves as a two-tunneling line device and can be shut off by the BP junction, resulting in a high on-state current and low threshold voltage. Simulation results show that the on-state current density Ion of the proposed TFET can be as large as 3.4 × 10^−4 A/μm, and the average subthreshold swing (SS) is 55 mV/decade. Moreover, both of Ion and SS can be optimized by lengthening channel and buried P+ layer. The off-state current density of TTP TFET is 4.4 × 10^−10 A/μm, and the threshold voltage is 0.13 V, showing better performance than normal germanium-based TFET. Furthermore, the physics and device design of this novel structure are explored in detail.展开更多
A quantum efficiency analytical model for complementary metal–oxide–semiconductor(CMOS) image pixels with a pinned photodiode structure is developed. The proposed model takes account of the non-uniform doping dist...A quantum efficiency analytical model for complementary metal–oxide–semiconductor(CMOS) image pixels with a pinned photodiode structure is developed. The proposed model takes account of the non-uniform doping distribution in the N-type region due to the impurity compensation formed by the actual fabricating process. The characteristics of two boundary PN junctions located in the N-type region for the particular spectral response of a pinned photodiode, are quantitatively analyzed. By solving the minority carrier steady-state diffusion equations and the barrier region photocurrent density equations successively, the analytical relationship between the quantum efficiency and the corresponding parameters such as incident wavelength, N-type width, peak doping concentration, and impurity density gradient of the N-type region is established. The validity of the model is verified by the measurement results with a test chip of 160×160 pixels array,which provides the accurate process with a theoretical guidance for quantum efficiency design in pinned photodiode pixels.展开更多
Development of a prototype of a portable optical sensing system is presented for fast detecting of samples’fluorescence spectra.A compact configuration is achieved by integrating a small spectrometer,a microcontrolle...Development of a prototype of a portable optical sensing system is presented for fast detecting of samples’fluorescence spectra.A compact configuration is achieved by integrating a small spectrometer,a microcontroller,a Universal Serial Bus(USB)Host Shield,a network module,and a web server.The fluorescence spectra of a tested sample can be obtained.Then the test data are sent through network communication to our Cloud Server which can store the data for further analyses.With this configuration,test results can be revealed in a short time and downloaded by users to their laptops,tablets or cellphones anytime and anywhere.展开更多
Dynamic characteristics of the single-crystal Ga N-passivated lateral AlGaN/GaN Schottky barrier diodes(SBDs)treated with proton irradiation are investigated.Radiation-induced changes including idealized Schottky inte...Dynamic characteristics of the single-crystal Ga N-passivated lateral AlGaN/GaN Schottky barrier diodes(SBDs)treated with proton irradiation are investigated.Radiation-induced changes including idealized Schottky interface and slightly degraded on-resistance(RON)are observed under 10-Me V proton irradiation at a fluence of 10^(14)cm^(-2).Because of the existing negative polarization charges induced at GaN/AlGaN interface,the dynamic ON-resistance(RON,dyn)shows negligible degradation after a 1000-s-long forward current stress of 50 mA to devices with and without being irradiated by protons.Furthermore,the normalized RON,dynincreases by only 14%that of the initial case after a 100-s-long bias of-600 V has been applied to the irradiated devices.The high-performance lateral AlGaN/GaN SBDs with tungsten as anode metal and in-situ single-crystal GaN as passivation layer show a great potential application in the harsh radiation environment of space.展开更多
基金supported by the National Natural Science Foundation of China (U1609209)National Natural Science Foundation of China (61605162)+2 种基金NSFC-Liaoning Province united foundation (U1608259)National Natural Science Foundation of China (51501219)the financial support from the China Scholarship Council
文摘Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is proposed as a substituting method.By absorbing high energy of the 1064 nm pulsed laser, the paint is vaporized quickly.The ablated debris is then collected by using a suction pump.Initial metal surface of the steel is exposed when laser beam irradiates perpendicularly and scans over it.The cleaned surface fulfills the requirements of surface preparation standards ISO 8501 of SA2.The adhesion is further characterized with pull-off test after carrying out painting with Jotamastic 87 aluminum paint.The repainting can be embedded onto the laser cleaned surface to bond much more tightly.The excellent adhesion strength of 20 MPa between repainted coating and the substrate is achieved, which is higher than what is required by shipyards applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.61704130)the Science Research Plan in Shaanxi Province,China(Grant No.2018JQ6064)the Science and Technology Project on Analog Integrated Circuit Laboratory,China(Grant No.JCKY2019210C029).
文摘Large threshold voltage and small on-state current are the main limitations of the normal tunneling field effect transistor (TFET). In this paper, a novel TFET with gate-controlled P+N+N+ structure based on partially depleted GeOI (PD-GeOI) substrate is proposed. With the buried P+-doped layer (BP layer) introduced under P+N+N+ structure, the proposed device behaves as a two-tunneling line device and can be shut off by the BP junction, resulting in a high on-state current and low threshold voltage. Simulation results show that the on-state current density Ion of the proposed TFET can be as large as 3.4 × 10^−4 A/μm, and the average subthreshold swing (SS) is 55 mV/decade. Moreover, both of Ion and SS can be optimized by lengthening channel and buried P+ layer. The off-state current density of TTP TFET is 4.4 × 10^−10 A/μm, and the threshold voltage is 0.13 V, showing better performance than normal germanium-based TFET. Furthermore, the physics and device design of this novel structure are explored in detail.
基金Project supported by the National Defense Pre-Research Foundation of China(Grant No.51311050301095)
文摘A quantum efficiency analytical model for complementary metal–oxide–semiconductor(CMOS) image pixels with a pinned photodiode structure is developed. The proposed model takes account of the non-uniform doping distribution in the N-type region due to the impurity compensation formed by the actual fabricating process. The characteristics of two boundary PN junctions located in the N-type region for the particular spectral response of a pinned photodiode, are quantitatively analyzed. By solving the minority carrier steady-state diffusion equations and the barrier region photocurrent density equations successively, the analytical relationship between the quantum efficiency and the corresponding parameters such as incident wavelength, N-type width, peak doping concentration, and impurity density gradient of the N-type region is established. The validity of the model is verified by the measurement results with a test chip of 160×160 pixels array,which provides the accurate process with a theoretical guidance for quantum efficiency design in pinned photodiode pixels.
基金supported by the National Key Development Program (2016YFB1102704)Natural Science Foundation of Liaoning Province (2015020115)+1 种基金National Natural Science Foundation of China (U1609209)National Science Fund for Distinguished Youth Scholars (51625504)
文摘Development of a prototype of a portable optical sensing system is presented for fast detecting of samples’fluorescence spectra.A compact configuration is achieved by integrating a small spectrometer,a microcontroller,a Universal Serial Bus(USB)Host Shield,a network module,and a web server.The fluorescence spectra of a tested sample can be obtained.Then the test data are sent through network communication to our Cloud Server which can store the data for further analyses.With this configuration,test results can be revealed in a short time and downloaded by users to their laptops,tablets or cellphones anytime and anywhere.
基金Project supported by the National Natural Science Foundation of China(Grant No.62104185)the Fundamental Research Funds for the Central Universities,China(Grant No.JB211103)+1 种基金the National Natural Science Foundation for Distinguished Young Scholars,China(Grant No.61925404)the Wuhu and Xidian University Special Fund for Industry–University-Research Cooperation,China(Grant No.XWYCXY-012021010)。
文摘Dynamic characteristics of the single-crystal Ga N-passivated lateral AlGaN/GaN Schottky barrier diodes(SBDs)treated with proton irradiation are investigated.Radiation-induced changes including idealized Schottky interface and slightly degraded on-resistance(RON)are observed under 10-Me V proton irradiation at a fluence of 10^(14)cm^(-2).Because of the existing negative polarization charges induced at GaN/AlGaN interface,the dynamic ON-resistance(RON,dyn)shows negligible degradation after a 1000-s-long forward current stress of 50 mA to devices with and without being irradiated by protons.Furthermore,the normalized RON,dynincreases by only 14%that of the initial case after a 100-s-long bias of-600 V has been applied to the irradiated devices.The high-performance lateral AlGaN/GaN SBDs with tungsten as anode metal and in-situ single-crystal GaN as passivation layer show a great potential application in the harsh radiation environment of space.