Spatial correlation of sound pressure and particle velocity of the surface noise in horizontally stratified media was demonstrated, with directional noise sources uniformly distributed on the ocean surface. In the eva...Spatial correlation of sound pressure and particle velocity of the surface noise in horizontally stratified media was demonstrated, with directional noise sources uniformly distributed on the ocean surface. In the evaluation of particle velocity, plane wave approximation was applied to each incident ray. Due to the equivalence of the sound source correlation property and its directivity, solutions for the spatial correlation of the field were transformed into the integration of the coherent function generated by a single directional source. As a typical horizontally stratified media, surface noise in a perfect waveguide was investigated. Correlation coefficients given by normal mode and geometric models show satisfactory agreement. Also, the normalized covariance between sound pressure and the vertical component of particle velocity is proportional to acoustic absorption coefficient, while that of the surface noise in semi-infinitely homogeneous space is zero.展开更多
Real-time track reconstruction in high-energy physics experiments at colliders running at high luminosity is very challenging for trigger systems. To perform pattern recognition and track fitting, artificial retina or...Real-time track reconstruction in high-energy physics experiments at colliders running at high luminosity is very challenging for trigger systems. To perform pattern recognition and track fitting, artificial retina or Hough transformation algorithms have been introduced to the field typically implemented on state-of-the-art field programmable gate array(FPGA) devices. In this paper, we report on two FPGA implementations of the retina algorithm: one using a mixed Floating-Point core and the other using Fixed-Point and Look-Up Table, and detailed measurements of the retina performance are investigated and compared. So far, the retina has mainly been used in a detector configuration comprising parallel planes, and the goal of our work is to study the hardware implementation of the retina algorithm and estimate the possibility of using such a method in a real experiment.展开更多
Compared to a scalar pressure sensor, a vector sensor can provide a higher signal-to-noise ratio (SNR) signal and more detailed intbrmation on the sound field. Study on vector sensors and their applications have bec...Compared to a scalar pressure sensor, a vector sensor can provide a higher signal-to-noise ratio (SNR) signal and more detailed intbrmation on the sound field. Study on vector sensors and their applications have become a hot topic. Research on the representation of a vector field is highly relevant for extending the scope of vector sensor technology. This paper discusses the range-frequency distribution of the vector field due to a broadband acoustic source moving in a shallow-water waveguide as the self noise of a surface ship, and the vector extension of the waveguide impulse response measured over a limited frequency range using an active source of known waveform. From theory analysis and numerical simulation, the range-frequency representation of a vector field exhibits an interference structure qualitatively similar to that of the corresponding pressure field but, being quantitatively different, provides additional information on the waveguide, especially through the vertical component. For the range-frequency representation, physical quantities that can better exhibit the interference characteristics of the wavegaide are the products of pressure and particle velocity and of the pressure and pressure gradient. An image processing method to effectively detect and isolate the individual striations from an interference structure was reviewed briefly. The representation of the vector impulse response was discussed according to two different measurement systems, also known as particle velocity and pressure gradient. The vector impulse response representation can not only provide additional information from pressure only but even more than that of the range-frequency representation.展开更多
The present study deals with the oblique wave trapping by a surface-piercing flexible porous barrier near a rigid wall in the presence of step-type bottoms under the assumptions of small amplitude water waves and the ...The present study deals with the oblique wave trapping by a surface-piercing flexible porous barrier near a rigid wall in the presence of step-type bottoms under the assumptions of small amplitude water waves and the structural response theory in finite water depth.The modified mild-slope equation along with suitable jump conditions and the least squares approximation method are used to handle the mathematical boundary value problem.Four types of edge conditions,i.e.,clamped-moored,clamped-free,moored-free,and moored-moored,are considered to keep the barrier at a desired position of interest.The role of the flexible porous barrier is studied by analyzing the reflection coefficient,surface elevation,and wave forces on the barrier and the rigid wall.The effects of step-type bottoms,incidence angle,barrier length,structural rigidity,porosity,and mooring angle are discussed.The study reveals that in the presence of a step bottom,full reflection can be found periodically with an increase in(i)wave number and(ii)distance between the barrier and the rigid wall.Moreover,nearly zero reflection can be found with a suitable combination of wave and structural parameters,which is desirable for creating a calm region near a rigid wall in the presence of a step bottom.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.(50909028).
文摘Spatial correlation of sound pressure and particle velocity of the surface noise in horizontally stratified media was demonstrated, with directional noise sources uniformly distributed on the ocean surface. In the evaluation of particle velocity, plane wave approximation was applied to each incident ray. Due to the equivalence of the sound source correlation property and its directivity, solutions for the spatial correlation of the field were transformed into the integration of the coherent function generated by a single directional source. As a typical horizontally stratified media, surface noise in a perfect waveguide was investigated. Correlation coefficients given by normal mode and geometric models show satisfactory agreement. Also, the normalized covariance between sound pressure and the vertical component of particle velocity is proportional to acoustic absorption coefficient, while that of the surface noise in semi-infinitely homogeneous space is zero.
基金supported by the National Key Research and Development Program of China(No.2016YFE0100900)Fundamental Research Funds for the central universities(No.2018YBZZ082)+1 种基金National Science Funds of China(No.11505074)Belgian FRS-FNRS
文摘Real-time track reconstruction in high-energy physics experiments at colliders running at high luminosity is very challenging for trigger systems. To perform pattern recognition and track fitting, artificial retina or Hough transformation algorithms have been introduced to the field typically implemented on state-of-the-art field programmable gate array(FPGA) devices. In this paper, we report on two FPGA implementations of the retina algorithm: one using a mixed Floating-Point core and the other using Fixed-Point and Look-Up Table, and detailed measurements of the retina performance are investigated and compared. So far, the retina has mainly been used in a detector configuration comprising parallel planes, and the goal of our work is to study the hardware implementation of the retina algorithm and estimate the possibility of using such a method in a real experiment.
基金Supported by Office of Naval Research grant N00014-07-1-1069the National Nature Science Foundation of China grant 50979019the Belgian National Fund for Scientific Research (F.R.S. - FNRS)
文摘Compared to a scalar pressure sensor, a vector sensor can provide a higher signal-to-noise ratio (SNR) signal and more detailed intbrmation on the sound field. Study on vector sensors and their applications have become a hot topic. Research on the representation of a vector field is highly relevant for extending the scope of vector sensor technology. This paper discusses the range-frequency distribution of the vector field due to a broadband acoustic source moving in a shallow-water waveguide as the self noise of a surface ship, and the vector extension of the waveguide impulse response measured over a limited frequency range using an active source of known waveform. From theory analysis and numerical simulation, the range-frequency representation of a vector field exhibits an interference structure qualitatively similar to that of the corresponding pressure field but, being quantitatively different, provides additional information on the waveguide, especially through the vertical component. For the range-frequency representation, physical quantities that can better exhibit the interference characteristics of the wavegaide are the products of pressure and particle velocity and of the pressure and pressure gradient. An image processing method to effectively detect and isolate the individual striations from an interference structure was reviewed briefly. The representation of the vector impulse response was discussed according to two different measurement systems, also known as particle velocity and pressure gradient. The vector impulse response representation can not only provide additional information from pressure only but even more than that of the range-frequency representation.
文摘The present study deals with the oblique wave trapping by a surface-piercing flexible porous barrier near a rigid wall in the presence of step-type bottoms under the assumptions of small amplitude water waves and the structural response theory in finite water depth.The modified mild-slope equation along with suitable jump conditions and the least squares approximation method are used to handle the mathematical boundary value problem.Four types of edge conditions,i.e.,clamped-moored,clamped-free,moored-free,and moored-moored,are considered to keep the barrier at a desired position of interest.The role of the flexible porous barrier is studied by analyzing the reflection coefficient,surface elevation,and wave forces on the barrier and the rigid wall.The effects of step-type bottoms,incidence angle,barrier length,structural rigidity,porosity,and mooring angle are discussed.The study reveals that in the presence of a step bottom,full reflection can be found periodically with an increase in(i)wave number and(ii)distance between the barrier and the rigid wall.Moreover,nearly zero reflection can be found with a suitable combination of wave and structural parameters,which is desirable for creating a calm region near a rigid wall in the presence of a step bottom.