期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Enhanced post-combustion CO_(2) capture and direct air capture by plasma surface functionalization of graphene adsorbent
1
作者 Rahul Navik Eryu Wang +3 位作者 Xiao Ding Huang Yunyi Yiyu Liu Jia Li 《Journal of Energy Chemistry》 2025年第1期653-664,共12页
Graphene has enormous potential to capture CO_(2)due to its unique properties and cost-effectiveness.However,graphene-based adsorbents have drawbacks of lower CO_(2)adsorption capacity and poor selectivity.This work d... Graphene has enormous potential to capture CO_(2)due to its unique properties and cost-effectiveness.However,graphene-based adsorbents have drawbacks of lower CO_(2)adsorption capacity and poor selectivity.This work demonstrates a one-step rapid and sustainable N_(2)/H_(2)plasma treatment process to prepare graphene-based sorbent material with enhanced CO_(2)adsorption performance.Plasma treatment directly enriches amine species,increases surface area,and improves textural properties.The CO_(2)adsorption capacity increases from 1.6 to 3.3 mmol/g for capturing flue gas,and from 0.14 to 1.3 mmol/g for direct air capture (DAC).Importantly,the electrothermal property of the plasma-modified aerogels has been significantly improved,resulting in faster heating rates and significantly reducing energy consumption compared to conventional external heating for regeneration of sorbents.Modified aerogels display improved selectivity of 42 and 87 after plasma modification for 5 and 10 min,respectively.The plasma-treated aerogels display minimal loss between 17%and 19% in capacity after 40 adsorption/desorption cycles,rendering excellent stability.The N_(2)/H_(2)plasma treatment of adsorbent materials would lower energy expenses and prevent negative effects on the global economy caused by climate change. 展开更多
关键词 Carbon neutrality CO_(2)capture Climate change Plasma treatment Graphene aerogel
在线阅读 下载PDF
A novel order-reduced thermal-coupling electrochemical model for lithium-ion batteries
2
作者 谢奕展 王舒慧 +1 位作者 王震坡 程夕明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期637-654,共18页
Although the single-particle model enhanced with electrolyte dynamics(SPMe)is simplified from the pseudo-twodimensional(P2D)electrochemical model for lithium-ion batteries,it is difficult to solve the partial differen... Although the single-particle model enhanced with electrolyte dynamics(SPMe)is simplified from the pseudo-twodimensional(P2D)electrochemical model for lithium-ion batteries,it is difficult to solve the partial differential equations of solid–liquid phases in real-time applications.Moreover,working temperatures have a heavy impact on the battery behavior.Hence,a thermal-coupling SPMe is constructed.Herein,a lumped thermal model is established to estimate battery temperatures.The order of the SPMe model is reduced by using both transfer functions and truncation techniques and merged with Arrhenius equations for thermal effects.The polarization voltage drop is then modified through the use of test data because its original model is unreliable theoretically.Finally,the coupling-model parameters are extracted using genetic algorithms.Experimental results demonstrate that the proposed model produces average errors of about 42 mV under 15 constant current conditions and 15 mV under nine dynamic conditions,respectively.This new electrochemicalthermal coupling model is reliable and expected to be used for onboard applications. 展开更多
关键词 lithium-ion batteries order-reduced electrochemical models SPME thermal-coupling model transient polarization voltage drop
在线阅读 下载PDF
An approximate analytical model for unconventional reservoir considering variable matrix blocks and simultaneous matrix depletion
3
作者 Kai-Xuan Qiu Jia Li +2 位作者 Dong Feng Shi-Ming Wei Gang Lei 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期352-365,共14页
In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate pro... In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate production evaluations because of the absence of matrix-macrofracture communication.In addition,most of the existing models are solved analytically based on Laplace transform and numerical inversion.Hence,an approximate analytical solution is derived directly in real-time space considering variable matrix blocks and simultaneous matrix depletion.To simplify the derivation,the simultaneous matrix depletion is divided into two parts:one part feeding the macrofractures and the other part feeding the microfractures.Then,a series of partial differential equations(PDEs)describing the transient flow and boundary conditions are constructed and solved analytically by integration.Finally,a relationship between oil rate and production time in real-time space is obtained.The new model is verified against classical analytical models.When the microfracture system and matrix-macrofracture communication is neglected,the result of the new model agrees with those obtained with the dual-porosity and triple-porosity model,respectively.Certainly,the new model also has an excellent agreement with the numerical model.The model is then applied to two actual tight oil wells completed in western Canada sedimentary basin.After identifying the flow regime,the solution suitably matches the field production data,and the model parameters are determined.Through these output parameters,we can accurately forecast the production and even estimate the petrophysical properties. 展开更多
关键词 Analytical solution Unconventional reservoir Variable matrix Simultaneous flow
在线阅读 下载PDF
Semitransparent organic photovoltaics enabled by transparent p-type inorganic semiconductor and near-infrared acceptor
4
作者 Xue Yan Jiayu Wang +17 位作者 Wei He Top Archie Dela Peña Can Zhu Hailin Yu Yingyue Hu Cenqi Yan Shengqiang Ren Xingyu Chen Zhe Wang Jiaying Wu Mingjie Li Jianlong Xia Lei Meng Shirong Lu Dewei Zhao Mikhail Artemyev Yongfang Li Pei Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期351-358,共8页
Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with hi... Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with high charge carrier mobility usually have planar and conjugated structures,thereby showing strong absorption in visible region.In this work,a new concept of incorporating transparent inorganic semiconductors is proposed for high-performance STOPVs.Copper(I)thiocyanate(CuSCN)is a visible-transparent inorganic semiconductor with an ionization potential of 5.45 eV and high hole mobility.The transparency of CuSCN benefits high average visible transmittance(AVT)of STOPVs.The energy levels of CuSCN as donor match those of near-infrared small molecule acceptor BTP-eC9,and the formed heterojunction exhibits an ability of exciton dissociation.High mobility of CuSCN contributes to a more favorable charge transport channel and suppresses charge recombination.The control STOPVs based on PM6/BTP-eC9 exhibit an AVT of 19.0%with a power conversion efficiency(PCE)of 12.7%.Partial replacement of PM6 with CuSCN leads to a 63%increase in transmittance,resulting in a higher AVT of 30.9%and a comparable PCE of 10.8%. 展开更多
关键词 Copper(I)thiocyanate Inorganic semiconductor SEMITRANSPARENT Organic photovoltaics Charge dissociation
在线阅读 下载PDF
Separate Source Channel Coding Is Still What You Need:An LLM-Based Rethinking
5
作者 REN Tianqi LI Rongpeng +5 位作者 ZHAO Mingmin CHEN Xianfu LIU Guangyi YANG Yang ZHAO Zhifeng ZHANG Honggang 《ZTE Communications》 2025年第1期30-44,共15页
Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information ... Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need. 展开更多
关键词 separate source channel coding(SSCC) joint source channel coding(JSCC) end-to-end communication system Large Language Model(LLM) lossless text compression Error Correction Code Transformer(ECCT)
在线阅读 下载PDF
Split-Ring Structured All-Inorganic Perovskite Photodetector Arrays for Masterly Internet of Things 被引量:1
6
作者 Bori Shi Pingyang Wang +7 位作者 Jingyun Feng Chang Xue Gaojie Yang Qingwei Liao Mengying Zhang Xingcai Zhang Weijia Wen Jinbo Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期25-42,共18页
Photodetectors with long detection distances and fast response are important media in constructing a non-contact human-machine interface for the Masterly Internet of Things(MIT).All-inorganic perovskites have excellen... Photodetectors with long detection distances and fast response are important media in constructing a non-contact human-machine interface for the Masterly Internet of Things(MIT).All-inorganic perovskites have excellent optoelectronic performance with high moisture and oxygen resistance,making them one of the promising candidates for high-performance photodetectors,but a simple,low-cost and reliable fabrication technology is urgently needed.Here,a dual-function laser etching method is developed to complete both the lyophilic split-ring structure and electrode patterning.This novel split-ring structure can capture the perovskite precursor droplet efficiently and achieve the uniform and compact deposition of CsPbBr3 films.Furthermore,our devices based on laterally conducting split-ring structured photodetectors possess outstanding performance,including the maximum responsivity of 1.44×105 mA W^(−1),a response time of 150μs in 1.5 kHz and one-unit area<4×10-2 mm2.Based on these split-ring photodetector arrays,we realized three-dimensional gesture detection with up to 100 mm distance detection and up to 600 mm s^(−1) speed detection,for low-cost,integrative,and non-contact human-machine interfaces.Finally,we applied this MIT to wearable and flexible digital gesture recognition watch panel,safe and comfortable central controller integrated on the car screen,and remote control of the robot,demonstrating the broad potential applications. 展开更多
关键词 Split-ring DEWETTING Perovskite photodetector array Human-machine interface Gesture recognition
在线阅读 下载PDF
Efficient C-N coupling in electrocatalytic urea generation on copper carbonate hydroxide electrocatalysts
7
作者 Yinuo Wang Yian Wang +11 位作者 Qinglan Zhao Hongming Xu Shangqian Zhu Fei Yang Ernest P.Delmo Xiaoyi Qiu Chi Song Juhee Jang Tiehuai Li Ping Gao MDanny Gu Minhua Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期289-298,I0008,共11页
Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)... Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)_2CO_(3))as an efficient CO_(2)NO_(3)RR electrocatalyst with an impressive urea Faradaic efficiency of45.2%±2.1%and a high yield rate of 1564.5±145.2μg h~(-1)mg_(cat)~(-1).More importantly,H_(2) evolution is fully inhibited on this electrocatalyst over a wide potential range between-0.3 and-0.8 V versus reversible hydrogen electrode.Our thermodynamic simulation reveals that the first C-N coupling follows a unique pathway on Cu_2(OH)_2CO_(3) by combining the two intermediates,~*COOH and~*NHO.This work demonstrates that high selectivity and yield rate of urea can be simultaneously achieved on simple Cu-based electrocatalysts in CO_(2)NO_(3)RR,and provide guidance for rational design of more advanced catalysts. 展开更多
关键词 Copper carbonate hydroxide Co-reduction Urea generation C-N coupling DFT calculation
在线阅读 下载PDF
Apparatus for producing single strontium atoms in an optical tweezer array
8
作者 Kai Wen Huijin Chen +5 位作者 Xu Yan Zejian Ren Chengdong He Elnur Hajiyev Preston Tsz Fung Wong Gyu-Boong Jo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期100-105,共6页
We outline an experimental setup for efficiently preparing a tweezer array of^(88)Sr atoms.Our setup uses permanent magnets to maintain a steady-state two-dimensional magneto-optical trap(MOT)which results in a loadin... We outline an experimental setup for efficiently preparing a tweezer array of^(88)Sr atoms.Our setup uses permanent magnets to maintain a steady-state two-dimensional magneto-optical trap(MOT)which results in a loading rate of up to10^(8)s^(-1)at 5 mK for the three-dimensional blue MOT.This enables us to trap 2×10^(6)^(88)Sr atoms at 2μK in a narrow-line red MOT with the^(1)S_(0)→^(3)P_(1)intercombination transition at 689 nm.With the Sisyphus cooling and pairwise loss processes,single atoms are trapped and imaged in 813 nm optical tweezers,exhibiting a lifetime of 2.5 min.We further investigate the survival fraction of a single atom in the tweezers and characterize the optical tweezer array using a release and recapture technique.Our experimental setup serves as an excellent reference for those engaged in experiments involving optical tweezer arrays,cold atom systems,and similar research. 展开更多
关键词 optical tweezer array single atom sisyphus cooling
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部