4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to b...4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to both human health and ecosystems.Herein,for the first time,we developed near-infrared(NIR)responsive upconversion luminescence nanosensor for NP detection.The Förster resonance energy transfer based upconversion nanoparticles(UCNPs)-graphene oxide sensor offers highly selective and sensitive detection of NP in linear ranges of 5−200 ng/mL and 200−1000 ng/mL under 980 nm and 808 nm excitation,respectively,with LOD at 4.2 ng/mL.The sensors were successfully tested for NP detection in real liquid milk samples with excellent recovery results.The rare-earth fluoride based upconversion luminescence nanosensor with NIR excitation wavelength,holds promise for sensing food,environmental,and biological samples due to their high sensitivity,specific recognition,low LOD,negligible autofluorescence,along with the deep penetration of NIR excitation sources.展开更多
Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or C...Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or Cu polluted soils.Phytoextraction of heavy metal(HM)using tolerant plants along with organic chelators has gained global attention,and this study provided further insights into this issue.Pot experiments were performed to evaluate the effects of different types of chelators[ethylenediamine tetraacetic acid(EDTA),ethylenediamine disuccinic acid(EDDS)and citric acid(CA)]to improve the phytoextraction capacity of Ricinus communis L.for the metals Cd and Cu.Contaminated soil from a copper smelter was used in this study.A rhizon soil sampler was used to determine the metal concentrations in soil pore water.The results indicated that R.communis was an adequate candidate for chelator induced phytoextraction under the experimental conditions and that EDDS would be a good candidate chelator for the phytoextraction of Cu in soils.EDTA addition obviously improved the uptake of Cd and Cu in R.communis;however,it posed the greatest risk because the concentration of HMs in soil pore water was very high even after 40 days.Compared with EDTA and EDDS,CA had few effects on Cd or Cu uptake in R.communis.Linear relationships between the metal uptake in R.communis shoots and the maximum HM concentrations in soil pore water under HM,2.5,5,and 10 mmol·kg^(-1) treatments were typically observed.From the results of this study,it could be concluded that EDDS treatments played a promising role in increasing the uptake of Cd or Cu and reducing its phytotoxicity.EDDS application could be an effective approach for the phytoextraction of Cd or Cu from polluted soils by growing Ricinus communis L.展开更多
In order to analyze the influences of storage aging on the safety of typical elemental explosives,the aged cyclotrimethylene trinitramine(RDX)and cyclotetramethylene tetranitramine(HMX)were prepared by isothermal agin...In order to analyze the influences of storage aging on the safety of typical elemental explosives,the aged cyclotrimethylene trinitramine(RDX)and cyclotetramethylene tetranitramine(HMX)were prepared by isothermal aging tests.The reaction thresholds of aged RDX and HMX under any ignition probability were studied by Langlie-Optimal D method.The thermal decomposition characteristics of RDX and HMX after aging were analyzed by DSC and ARC.Experimental results showed that compared with unaged RDX and HMX,on the one hand,the critical impact energy and critical friction of RDX and HMX aged for 14,28,and 56 days are significantly reduced at an explosion probability of 50%,0.01%,and 0.0001%,respectively.With the increase of aging time,the mechanical sensitivity of RDX and HMX increases obviously.On the other hand,the initial decomposition temperature of RDX and HMX after 56 days of aging decreases,the decomposition heat decreases,the activation energy increases,and the reaction difficulty increases.展开更多
To explore the response law of non-lethal large-size kinetic energy projectiles to blunt attack on skin tissue,and to evaluate the skin injury characteristics of the attacked personnel and the use safety of kinetic en...To explore the response law of non-lethal large-size kinetic energy projectiles to blunt attack on skin tissue,and to evaluate the skin injury characteristics of the attacked personnel and the use safety of kinetic energy projectiles.Based on the LS-DYNA simulation software,a three-layer skin simulation model and a Flash-Ball rubber bullet model are established,and the force-time and deformation-time biomechanical corridors of the Flash-Ball rubber bullet impacting human skin tissue are obtained.The corridor curve and the energy transfer and diffusion are analyzed and compared.The safety evaluation of the damage caused by the rubber bullet shooting a human body at different distances is carried out using the empirical formula of the penetration limit.Finally,the safe shooting distance is obtained.The results show that the model used in the simulation has a good correlation with the experimental data,its biomechanical corridor characteristics are different from those of conventional vehicle impact and smallsize projectile response characteristics.The energy transfer and action time of medium and low-speed impact may cause greater damage.The fat layer is the largest energy absorption unit.The minimum safe shooting distance to ensure skin tissue from penetrating damage is 15.8 m,and the limit specific kinetic energy of skin damage is 7.88 J/cm^(2).This study can be extended to the study of biomechanical response law and safety evaluation under the impact of the same type of large kinetic energy projectile,which provides an important theoretical reference for the police to use large kinetic energy projectiles to conduct safe shooting in peacekeeping operations.展开更多
Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic ...Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic field's peak both in the time domain and in the frequency domain.With regard to this problem,after analyzing the time-domain and the frequency-domain characteristics of radar pulsed signals,we propose a new time-frequency combination test method based on the correction of the test parameters,as well as its correction method at different bandwidths.The test method is applied in a quick test of a high-power pulsed radar signal,and the corrected results have error less than 1 dB in both the time domain and the frequency domain,which indicates that the proposed time-frequency combined method is effective in testing strong and pulsed electromagnetic fields.展开更多
Dynamic response and failure behavior of rock under static-dynamic loading were studied. The effects of initial static load on the total energy dissipated during the failure process of specimen were analyzed. To simul...Dynamic response and failure behavior of rock under static-dynamic loading were studied. The effects of initial static load on the total energy dissipated during the failure process of specimen were analyzed. To simulate the engineering situation that in-situ rock experienced and obtain the dynamic loading with an intermediate strain rate, a low cycle fatigue load with the frequency from 0.5 to 5 Hz was adopted by servo-controlled Instron material testing system. The results show that the obtained strain rate increase with the increase of load frequency. The initial static load has great influence on both the energy and dynamic response of rock. Both the energy and the maximum failure load P_f decreases with the increase of initial static load. P_f under the static-dynamic loading is larger than that under only the static loading but less than that under only the dynamic loading. The load-displacement curves become nonlinear as the pre-added static load reaches the transition point which is about one third of static strength. With the increase of initial static load, Young’s modulus decreases and poisson ratio increases. It shows that rock has a lower strength and a tendency to soften under a higher initial static load. Rock may be broken more easily static-dynamic loading than under only the dynamic loading. The proposed method is useful in the investigation of constitutive relationship and failure behavior of rock under quasi-dynamic loading.展开更多
Magnesium hydride(MgH2)was doped into PTFE/Al to improve the energy release characteristics of the material system and strive for better application in military engineering.Five types of PTFE/Al/MgH2 reactive material...Magnesium hydride(MgH2)was doped into PTFE/Al to improve the energy release characteristics of the material system and strive for better application in military engineering.Five types of PTFE/Al/MgH2 reactive materials with different MgH2 content were prepared by molding sintering method.The dynamic mechanical properties of the materials were studied by performing split-Hopkinson pressure bar(SHPB)tests and scanning electron microscope characterizations.The thermal behavior,reaction energy,reaction process and reaction mechanism were systematically investigated by conducting thermogravimetry-differential scanning calorimetry tests,oxygen bomb calorimeter measurements,Xray diffraction and SHPB tests.The results show that MgH2 particles less than 10%content contribute to heightening the dynamic mechanical properties of PTFE/Al system.The product Mg generated by decomposition of MgH2 can not only react with gas phase C2F4þbut also undergo a Grignard-type reaction with condensed PTFE.The reaction energy and ignition threshold of PTFE/Al/MgH2 reactive materials enhance monotonously as MgH2 content rose.With the increase of MgH2 content from 0%to 20%,the reaction time is prolonged as well as the reaction intensity is enhanced dramatically arising from the massive water vapour produced by the reaction between O2 and H2.The gaseous products generated can form a high pressure shortly after the reaction,which helps to elevate the damage effect of the PTFE/Al system.展开更多
The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co...The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.展开更多
Arc resistance is an important parameter for characterizing long arcs in air, and its laboratory testing is of importance for accurate arc modeling of electromagnetic transient caused by short circuit fault. Therefore...Arc resistance is an important parameter for characterizing long arcs in air, and its laboratory testing is of importance for accurate arc modeling of electromagnetic transient caused by short circuit fault. Therefore, we constructed an experimental system to study the cha- racteristics of long AC arc in air. Driven by currents of 10 kA or 40 kA (root mean square value), the system produces arcs with different initial lengths of 1 m, 2 m and 4 m, and the movement of the arcs are captured by a high-speed camera. After performing experiments using the system, we carried out analysis and comparisons of the arc resistance of arcs with different lengths and different currents, as well as a study of the relationship between the macro-morphology and the resistance of the arcs. Conclusions were drawn from the experimental re- sults: the arc voltage had obvious saturation characteristics; the arc resistance increased with the increase of arc length and the decrease of current; the arcs bended or extended significantly in time and the peak arc voltage within a single cycle increased correspondingly; the arcs had voltage and current in the same phase. In the end, a formula of arc resistance based on the experiment results is derived.展开更多
Sources of dispersions that contribute to delivery error and reduce the soldier performance in terms of hit probability are numerous.In order to improve the warfighter performance,the source of the errors contributing...Sources of dispersions that contribute to delivery error and reduce the soldier performance in terms of hit probability are numerous.In order to improve the warfighter performance,the source of the errors contributing to the inaccuracy and dispersion of the weapon systems must be understood.They include ammunition dispersion error,gun dispersion,aerodynamic jump and the aiming error.The aiming error or gun pointing error is defined as the angle between the gun muzzle at the instant the trigger is pulled and the line of fire that corresponds to the intendent aim point.This is a round-to-round error.In weapons systems that include the rifle,the ammunition,a sight and a gunner,the aiming error was shown to be the single most important source of dispersion for the regular infantryman.In other words,for the general purpose rifle weapon system,the weak link is often the human.In order to verify and quantify this assertion,an experimental investigation was carried out to determine the aiming error associated with general purpose rifle fired by infantryman.The aiming error was evaluated for various firing positions and scenarios using infantryman for ranges varying between 100 m and 500 m.The results show that the aiming error is the main contributor to dispersion for the general purpose rifle fired by a non-specialized infantryman.The aiming error induced dispersion for unstressed and rested gunners is shown to be at best equivalent to that of the weapon fired from a bench rest by a marksman.Crown Copyright(?) 2019 Production and hosting by Elsevier B.V.on behalf of China Ordnance Society.展开更多
A detailed analysis of mode II stress intensity factors(SIFs) for the double edge cracked Brazilian disk subjected to different diametral compression is presented using a weight function method. The mode II SIFs at cr...A detailed analysis of mode II stress intensity factors(SIFs) for the double edge cracked Brazilian disk subjected to different diametral compression is presented using a weight function method. The mode II SIFs at crack tips can be obtained by simply calculating an integral of the product of mode II weight function and the shear stress on the prospective crack faces of uncracked disk loaded by a diametral compression. A semi-analytical formula for the calculation of normalized mode II SIF, f _Ⅱ, is derived for different crack lengths (from 0.1 to 0.7) and inclination angles (from 10° to 75°) with respect to loading direction. Comparison between the obtained results and finite element method solutions shows that the weight function method is of high precision. Combined with the authors previous work on mode I fracture analysis, the new specimen geometry can be used to study fracture through any combination of mode I and mode II loading by a simple alignment of the crack relative to the diameter of compression loading, and to obtain pure mode II crack extension. Another advantage of this specimen geometry is that it is available directly from rock core and is also easy to fabricate.展开更多
Discrete manufacturing workshops are confronted with problems of processing diverse products and strict real time requirements for data service calculation and manufacturing equipment,which makes it difficult to provi...Discrete manufacturing workshops are confronted with problems of processing diverse products and strict real time requirements for data service calculation and manufacturing equipment,which makes it difficult to provide real time feedback and compensation.In this study,a high-availability,high-performance,and high-concurrency digital twin reference model was constructed to satisfy a large number of manufacturing requirements.A multiterminal real-time interaction model and information aging classification rules for virtual and physical models were established.Moreover,a multiterminal virtual interaction model was proposed,and a generalized distributed computing service digital twinning system was developed.This digital twin system was considered a machine tool box processing line as an actual case.Consequently,a full closed-loop manufacturing process digital twin platform for physical request service,real-time response,and quality information feedback from iterations,which provides case guidance for subsequent factory digital twin systems,was realized.The proposed system can satisfy the requirements of multidevice big data computing services in modern manufacturing plants,as well as multiplatform,low-latency,and high-fidelity information visualization requirements for managers.Thus,this system is expected to play an important role in information factories.展开更多
Inspired by the phenomenon of superhydrophobic plants and animals in nature,1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)@copper stearate(CS)core-shell composites with similar properties was prepared.A rough shell layer...Inspired by the phenomenon of superhydrophobic plants and animals in nature,1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)@copper stearate(CS)core-shell composites with similar properties was prepared.A rough shell layer on the surface of the HMX was observed by scanning electron microscopy(SEM),and a series of in-depth characterization confirmed the successful generation of CS and the coreshell structure of the samples.Differential scanning calorimeter(DSC)proves that the crystal transition temperature(204℃)and high temperature decomposition exothermal temperature(284℃)of HMX@CS is almost unchanged compared with pure HMX,which means HMX and CS have good compatibility.Then,the H50 of the samples also increased continuously(16.6 cm→33.7 cm)when the CS shell content increased from 1%to 5%,indicating that the CS shell has a certain buffering performance,and CS will absorb some heat and melt under the stimulation of impact due to its low melting point,which improved impact sensitivity of HMX effectively further.Moreover,HMX@CS has excellent hydrophobic and oleophilic performance,shows excellent wettability with lipid binder,and samples with appropriate CS shell content can continue to combustion stably after covering water.This waterproof and low sensitivity coating provides a new way for the development of multifunctional energetic materials.展开更多
In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under st...In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under static tension load.Box-plot was used to extract the singular testing values of bearing strength and effective statistical values were obtained.T-test method of independent samples was used to study how much pretightening loads influence bearing strength.The results show that the geometrical parameters,such as ratios of width to hole diameter(w/d) and edge distance to hole diameter(e/d),remarkably influence failure mode and bearing strength.Net-section failure will occur when w/d is smaller than 4,and shear-out failure will occur when e/d is smaller than 2.Bearing failure or bearing and shear-out combined failure will occur when w/d is greater than 4 and e/d is greater than 2.There is an optimal combination of geometrical parameters to achieve the highest bearing strength.For most of specimens,pretightening loads do not explicitly influence bearing strength.展开更多
In the experiment, the inhibition of isoflavones extracted from soybean and tempe to SP2/0 and Hela cells was studied, and the inhibition rate of each unit for cancer cells was also studied. The results showed that th...In the experiment, the inhibition of isoflavones extracted from soybean and tempe to SP2/0 and Hela cells was studied, and the inhibition rate of each unit for cancer cells was also studied. The results showed that the inhibition rate of tempe isoflavones to SP2/0 was 96.9% and to Hela cells was 69.5% when the concentration was 20μg·mL^-1. In the same condition, the inhibition rate of soybean isoflavones was 83.16% and 60.5%. With the decline of concentration, the inhibition rate decreased. The inhibition of isoflavones to SP2/0 did not exist when the concentration was 5-1.25μg·mL^-1.展开更多
文摘4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to both human health and ecosystems.Herein,for the first time,we developed near-infrared(NIR)responsive upconversion luminescence nanosensor for NP detection.The Förster resonance energy transfer based upconversion nanoparticles(UCNPs)-graphene oxide sensor offers highly selective and sensitive detection of NP in linear ranges of 5−200 ng/mL and 200−1000 ng/mL under 980 nm and 808 nm excitation,respectively,with LOD at 4.2 ng/mL.The sensors were successfully tested for NP detection in real liquid milk samples with excellent recovery results.The rare-earth fluoride based upconversion luminescence nanosensor with NIR excitation wavelength,holds promise for sensing food,environmental,and biological samples due to their high sensitivity,specific recognition,low LOD,negligible autofluorescence,along with the deep penetration of NIR excitation sources.
基金Supported by the Joint Funds of the National Natural Science Foundation of China(U2340219)。
文摘Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or Cu polluted soils.Phytoextraction of heavy metal(HM)using tolerant plants along with organic chelators has gained global attention,and this study provided further insights into this issue.Pot experiments were performed to evaluate the effects of different types of chelators[ethylenediamine tetraacetic acid(EDTA),ethylenediamine disuccinic acid(EDDS)and citric acid(CA)]to improve the phytoextraction capacity of Ricinus communis L.for the metals Cd and Cu.Contaminated soil from a copper smelter was used in this study.A rhizon soil sampler was used to determine the metal concentrations in soil pore water.The results indicated that R.communis was an adequate candidate for chelator induced phytoextraction under the experimental conditions and that EDDS would be a good candidate chelator for the phytoextraction of Cu in soils.EDTA addition obviously improved the uptake of Cd and Cu in R.communis;however,it posed the greatest risk because the concentration of HMs in soil pore water was very high even after 40 days.Compared with EDTA and EDDS,CA had few effects on Cd or Cu uptake in R.communis.Linear relationships between the metal uptake in R.communis shoots and the maximum HM concentrations in soil pore water under HM,2.5,5,and 10 mmol·kg^(-1) treatments were typically observed.From the results of this study,it could be concluded that EDDS treatments played a promising role in increasing the uptake of Cd or Cu and reducing its phytotoxicity.EDDS application could be an effective approach for the phytoextraction of Cd or Cu from polluted soils by growing Ricinus communis L.
基金supported by the National Key Laboratory of Energetic Materials, China (Grant No. 2023-LB-036-09).
文摘In order to analyze the influences of storage aging on the safety of typical elemental explosives,the aged cyclotrimethylene trinitramine(RDX)and cyclotetramethylene tetranitramine(HMX)were prepared by isothermal aging tests.The reaction thresholds of aged RDX and HMX under any ignition probability were studied by Langlie-Optimal D method.The thermal decomposition characteristics of RDX and HMX after aging were analyzed by DSC and ARC.Experimental results showed that compared with unaged RDX and HMX,on the one hand,the critical impact energy and critical friction of RDX and HMX aged for 14,28,and 56 days are significantly reduced at an explosion probability of 50%,0.01%,and 0.0001%,respectively.With the increase of aging time,the mechanical sensitivity of RDX and HMX increases obviously.On the other hand,the initial decomposition temperature of RDX and HMX after 56 days of aging decreases,the decomposition heat decreases,the activation energy increases,and the reaction difficulty increases.
文摘To explore the response law of non-lethal large-size kinetic energy projectiles to blunt attack on skin tissue,and to evaluate the skin injury characteristics of the attacked personnel and the use safety of kinetic energy projectiles.Based on the LS-DYNA simulation software,a three-layer skin simulation model and a Flash-Ball rubber bullet model are established,and the force-time and deformation-time biomechanical corridors of the Flash-Ball rubber bullet impacting human skin tissue are obtained.The corridor curve and the energy transfer and diffusion are analyzed and compared.The safety evaluation of the damage caused by the rubber bullet shooting a human body at different distances is carried out using the empirical formula of the penetration limit.Finally,the safe shooting distance is obtained.The results show that the model used in the simulation has a good correlation with the experimental data,its biomechanical corridor characteristics are different from those of conventional vehicle impact and smallsize projectile response characteristics.The energy transfer and action time of medium and low-speed impact may cause greater damage.The fat layer is the largest energy absorption unit.The minimum safe shooting distance to ensure skin tissue from penetrating damage is 15.8 m,and the limit specific kinetic energy of skin damage is 7.88 J/cm^(2).This study can be extended to the study of biomechanical response law and safety evaluation under the impact of the same type of large kinetic energy projectile,which provides an important theoretical reference for the police to use large kinetic energy projectiles to conduct safe shooting in peacekeeping operations.
文摘Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic field's peak both in the time domain and in the frequency domain.With regard to this problem,after analyzing the time-domain and the frequency-domain characteristics of radar pulsed signals,we propose a new time-frequency combination test method based on the correction of the test parameters,as well as its correction method at different bandwidths.The test method is applied in a quick test of a high-power pulsed radar signal,and the corrected results have error less than 1 dB in both the time domain and the frequency domain,which indicates that the proposed time-frequency combined method is effective in testing strong and pulsed electromagnetic fields.
文摘Dynamic response and failure behavior of rock under static-dynamic loading were studied. The effects of initial static load on the total energy dissipated during the failure process of specimen were analyzed. To simulate the engineering situation that in-situ rock experienced and obtain the dynamic loading with an intermediate strain rate, a low cycle fatigue load with the frequency from 0.5 to 5 Hz was adopted by servo-controlled Instron material testing system. The results show that the obtained strain rate increase with the increase of load frequency. The initial static load has great influence on both the energy and dynamic response of rock. Both the energy and the maximum failure load P_f decreases with the increase of initial static load. P_f under the static-dynamic loading is larger than that under only the static loading but less than that under only the dynamic loading. The load-displacement curves become nonlinear as the pre-added static load reaches the transition point which is about one third of static strength. With the increase of initial static load, Young’s modulus decreases and poisson ratio increases. It shows that rock has a lower strength and a tendency to soften under a higher initial static load. Rock may be broken more easily static-dynamic loading than under only the dynamic loading. The proposed method is useful in the investigation of constitutive relationship and failure behavior of rock under quasi-dynamic loading.
基金support from the National Natural Science Foun-dation of China(General Program.Grant No.51673213)Na-tional Natural Science Foundation of China(Grant No.51803235)are gratefully acknowledged.
文摘Magnesium hydride(MgH2)was doped into PTFE/Al to improve the energy release characteristics of the material system and strive for better application in military engineering.Five types of PTFE/Al/MgH2 reactive materials with different MgH2 content were prepared by molding sintering method.The dynamic mechanical properties of the materials were studied by performing split-Hopkinson pressure bar(SHPB)tests and scanning electron microscope characterizations.The thermal behavior,reaction energy,reaction process and reaction mechanism were systematically investigated by conducting thermogravimetry-differential scanning calorimetry tests,oxygen bomb calorimeter measurements,Xray diffraction and SHPB tests.The results show that MgH2 particles less than 10%content contribute to heightening the dynamic mechanical properties of PTFE/Al system.The product Mg generated by decomposition of MgH2 can not only react with gas phase C2F4þbut also undergo a Grignard-type reaction with condensed PTFE.The reaction energy and ignition threshold of PTFE/Al/MgH2 reactive materials enhance monotonously as MgH2 content rose.With the increase of MgH2 content from 0%to 20%,the reaction time is prolonged as well as the reaction intensity is enhanced dramatically arising from the massive water vapour produced by the reaction between O2 and H2.The gaseous products generated can form a high pressure shortly after the reaction,which helps to elevate the damage effect of the PTFE/Al system.
基金supported by the National Natural Science Foundation of China(51875465)
文摘The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.
基金Project supported by National Natural Science Foundation of China(50907036), National Basic Research Program of China (973 Program ) (2011CB209403).
文摘Arc resistance is an important parameter for characterizing long arcs in air, and its laboratory testing is of importance for accurate arc modeling of electromagnetic transient caused by short circuit fault. Therefore, we constructed an experimental system to study the cha- racteristics of long AC arc in air. Driven by currents of 10 kA or 40 kA (root mean square value), the system produces arcs with different initial lengths of 1 m, 2 m and 4 m, and the movement of the arcs are captured by a high-speed camera. After performing experiments using the system, we carried out analysis and comparisons of the arc resistance of arcs with different lengths and different currents, as well as a study of the relationship between the macro-morphology and the resistance of the arcs. Conclusions were drawn from the experimental re- sults: the arc voltage had obvious saturation characteristics; the arc resistance increased with the increase of arc length and the decrease of current; the arcs bended or extended significantly in time and the peak arc voltage within a single cycle increased correspondingly; the arcs had voltage and current in the same phase. In the end, a formula of arc resistance based on the experiment results is derived.
文摘Sources of dispersions that contribute to delivery error and reduce the soldier performance in terms of hit probability are numerous.In order to improve the warfighter performance,the source of the errors contributing to the inaccuracy and dispersion of the weapon systems must be understood.They include ammunition dispersion error,gun dispersion,aerodynamic jump and the aiming error.The aiming error or gun pointing error is defined as the angle between the gun muzzle at the instant the trigger is pulled and the line of fire that corresponds to the intendent aim point.This is a round-to-round error.In weapons systems that include the rifle,the ammunition,a sight and a gunner,the aiming error was shown to be the single most important source of dispersion for the regular infantryman.In other words,for the general purpose rifle weapon system,the weak link is often the human.In order to verify and quantify this assertion,an experimental investigation was carried out to determine the aiming error associated with general purpose rifle fired by infantryman.The aiming error was evaluated for various firing positions and scenarios using infantryman for ranges varying between 100 m and 500 m.The results show that the aiming error is the main contributor to dispersion for the general purpose rifle fired by a non-specialized infantryman.The aiming error induced dispersion for unstressed and rested gunners is shown to be at best equivalent to that of the weapon fired from a bench rest by a marksman.Crown Copyright(?) 2019 Production and hosting by Elsevier B.V.on behalf of China Ordnance Society.
文摘A detailed analysis of mode II stress intensity factors(SIFs) for the double edge cracked Brazilian disk subjected to different diametral compression is presented using a weight function method. The mode II SIFs at crack tips can be obtained by simply calculating an integral of the product of mode II weight function and the shear stress on the prospective crack faces of uncracked disk loaded by a diametral compression. A semi-analytical formula for the calculation of normalized mode II SIF, f _Ⅱ, is derived for different crack lengths (from 0.1 to 0.7) and inclination angles (from 10° to 75°) with respect to loading direction. Comparison between the obtained results and finite element method solutions shows that the weight function method is of high precision. Combined with the authors previous work on mode I fracture analysis, the new specimen geometry can be used to study fracture through any combination of mode I and mode II loading by a simple alignment of the crack relative to the diameter of compression loading, and to obtain pure mode II crack extension. Another advantage of this specimen geometry is that it is available directly from rock core and is also easy to fabricate.
基金Project(51975019)supported by the National Natural Science Foundation of ChinaProject(2019 ZX 04024001)supported by the National Science and Technology Major Project of ChinaProject(Z 201100006720008)supported by the Beijing Science and Technology Plan,China。
文摘Discrete manufacturing workshops are confronted with problems of processing diverse products and strict real time requirements for data service calculation and manufacturing equipment,which makes it difficult to provide real time feedback and compensation.In this study,a high-availability,high-performance,and high-concurrency digital twin reference model was constructed to satisfy a large number of manufacturing requirements.A multiterminal real-time interaction model and information aging classification rules for virtual and physical models were established.Moreover,a multiterminal virtual interaction model was proposed,and a generalized distributed computing service digital twinning system was developed.This digital twin system was considered a machine tool box processing line as an actual case.Consequently,a full closed-loop manufacturing process digital twin platform for physical request service,real-time response,and quality information feedback from iterations,which provides case guidance for subsequent factory digital twin systems,was realized.The proposed system can satisfy the requirements of multidevice big data computing services in modern manufacturing plants,as well as multiplatform,low-latency,and high-fidelity information visualization requirements for managers.Thus,this system is expected to play an important role in information factories.
基金financially supported by the National Natural Science Foundation of China (Grant NO.11702268)Sichuan provincial key S&T Special Projects (Grant NO.19DZX0106)
文摘Inspired by the phenomenon of superhydrophobic plants and animals in nature,1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)@copper stearate(CS)core-shell composites with similar properties was prepared.A rough shell layer on the surface of the HMX was observed by scanning electron microscopy(SEM),and a series of in-depth characterization confirmed the successful generation of CS and the coreshell structure of the samples.Differential scanning calorimeter(DSC)proves that the crystal transition temperature(204℃)and high temperature decomposition exothermal temperature(284℃)of HMX@CS is almost unchanged compared with pure HMX,which means HMX and CS have good compatibility.Then,the H50 of the samples also increased continuously(16.6 cm→33.7 cm)when the CS shell content increased from 1%to 5%,indicating that the CS shell has a certain buffering performance,and CS will absorb some heat and melt under the stimulation of impact due to its low melting point,which improved impact sensitivity of HMX effectively further.Moreover,HMX@CS has excellent hydrophobic and oleophilic performance,shows excellent wettability with lipid binder,and samples with appropriate CS shell content can continue to combustion stably after covering water.This waterproof and low sensitivity coating provides a new way for the development of multifunctional energetic materials.
基金Project(51175424)supported by the National Natural Science Foundation of ChinaProject(B07050)supported by‘111’Program of ChinaProject(JC20110257)supported by the Basic Research Foundation of Northwestern Polytechnical University,China
文摘In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under static tension load.Box-plot was used to extract the singular testing values of bearing strength and effective statistical values were obtained.T-test method of independent samples was used to study how much pretightening loads influence bearing strength.The results show that the geometrical parameters,such as ratios of width to hole diameter(w/d) and edge distance to hole diameter(e/d),remarkably influence failure mode and bearing strength.Net-section failure will occur when w/d is smaller than 4,and shear-out failure will occur when e/d is smaller than 2.Bearing failure or bearing and shear-out combined failure will occur when w/d is greater than 4 and e/d is greater than 2.There is an optimal combination of geometrical parameters to achieve the highest bearing strength.For most of specimens,pretightening loads do not explicitly influence bearing strength.
基金Supported by Heilongjiang Province Science and Technique Foundation(C0131)
文摘In the experiment, the inhibition of isoflavones extracted from soybean and tempe to SP2/0 and Hela cells was studied, and the inhibition rate of each unit for cancer cells was also studied. The results showed that the inhibition rate of tempe isoflavones to SP2/0 was 96.9% and to Hela cells was 69.5% when the concentration was 20μg·mL^-1. In the same condition, the inhibition rate of soybean isoflavones was 83.16% and 60.5%. With the decline of concentration, the inhibition rate decreased. The inhibition of isoflavones to SP2/0 did not exist when the concentration was 5-1.25μg·mL^-1.