This paper discusses about the purity of strengthened pure platinum wire and the development method of platinum micro wire, in order to solve the difficulties of low tensile strength, easy to break, and low rate of mi...This paper discusses about the purity of strengthened pure platinum wire and the development method of platinum micro wire, in order to solve the difficulties of low tensile strength, easy to break, and low rate of micro wire. And it contrasts some performance of strengthened pure platinum wire and sponge Pt wire. The researches draw a conclusion that the thermoelectric properties of strengthened pure platinum micro wire was in accordance with national standards and satisfied users' requirements.展开更多
In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to...In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life.展开更多
Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for d...Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation.展开更多
Carbon materials with adjustable porosity,controllable het-eroatom doping and low-cost have been received considerable attention as supercapacitor electrodes.However,using carbon materials with abundant micropores,a h...Carbon materials with adjustable porosity,controllable het-eroatom doping and low-cost have been received considerable attention as supercapacitor electrodes.However,using carbon materials with abundant micropores,a high surface area and a high-dopant content for an aqueous su-percapacitor with a high energy output still remains a challenge.We report the easy synthesis of interconnected carbon spheres by a polymerization re-action between p-benzaldehyde and 2,6-diaminopyridine.The synthesis in-volves adjusting the mass ratio of the copolymer and KOH activator to achieve increased charge storage ability and high energy output,which are attributed to the high ion-accessible area provided by the large number of micropores,high N/O contents and rapid ion diffusion channels in the porous structure.At a PMEC∶KOH mass ratio of 1∶1,the high electrolyte ion-adsorption area(2599.76 m^(2) g^(−1))and the N/O dopant atoms of the conductive framework of a typical carbon electrode produce a superior specific capacity(303.2 F g^(−1)@0.5 A g^(−1))giving an assembled symmetric capacitor a high energy delivery of 11.3 Wh kg^(−1)@250 W kg^(−1).This study presents a simple strategy for synthesizing microporous carbon and highlights its potential use in KOH-based supercapacitors.展开更多
4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to b...4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to both human health and ecosystems.Herein,for the first time,we developed near-infrared(NIR)responsive upconversion luminescence nanosensor for NP detection.The Förster resonance energy transfer based upconversion nanoparticles(UCNPs)-graphene oxide sensor offers highly selective and sensitive detection of NP in linear ranges of 5−200 ng/mL and 200−1000 ng/mL under 980 nm and 808 nm excitation,respectively,with LOD at 4.2 ng/mL.The sensors were successfully tested for NP detection in real liquid milk samples with excellent recovery results.The rare-earth fluoride based upconversion luminescence nanosensor with NIR excitation wavelength,holds promise for sensing food,environmental,and biological samples due to their high sensitivity,specific recognition,low LOD,negligible autofluorescence,along with the deep penetration of NIR excitation sources.展开更多
As the mining industry continues to expand and international oil prices increase,more rigorous demands are being placed on the design of mining equipment.Given this,there is an urgent need to develop new power-driven ...As the mining industry continues to expand and international oil prices increase,more rigorous demands are being placed on the design of mining equipment.Given this,there is an urgent need to develop new power-driven mining equipment to solve the problems of high energy consumption and insufficient power coupling of current equipment.This study proposed a design of a hybrid power system for underground Load Haul Dump(LHD).The proposed design integrated Quality Function Deployment(QFD)and Theory of Inventive Problem Solving(TRIZ).It identified 7 user requirements and 10 related technical features,formulated 11 innovative design solutions,and ultimately adopting an electric drive hybrid power scheme.This scheme effectively addressesd power transmission coupling problems and improve the efficiency of loaders.A 6 m³hybrid power loader prototype has been developed,which reduces operational energy consumption and advances the electrification and green,low-carbon evolution of mining equipment.展开更多
Due to the presence of nitro groups, the dust generated during the production and utilization of energetic materials may potentially lead to dust explosion even under low-oxygen or anaerobic conditions.Considering the...Due to the presence of nitro groups, the dust generated during the production and utilization of energetic materials may potentially lead to dust explosion even under low-oxygen or anaerobic conditions.Considering the high energy density of energetic materials, dust explosion can cause serious production safety accidents. Therefore, it is necessary to understand the dust explosion characteristics of energetic materials and the mechanism of dust explosion. According to the literature review, among various influencing factors, the physical and chemical properties of dust are the decisive factors affecting the explosion characteristics of dust. In addition to experimental studies, numerical simulation is another important tool. However, it is subjected to certain limitations. Moreover, it is essential but challenging to fully understand the underlying mechanism. In addition, given the safety hazards posed by dust explosion, explosion suppression has attracted extensive attention for research. Depending on the medium used, there are different forms of suppression, including powder explosion suppression, water spray explosion suppression, inert gas explosion suppression, porous material explosion suppression, and vacuum chamber explosion suppression. As for the selection of explosion suppression agent, consideration must be given to the characteristics of the material. Furthermore, the above research has laid a foundation for discussing the future progress in studying dust explosion of energetic materials, with nano dust and the constraints of existing technology as the focal point.展开更多
RDX/Al mixtures are widely utilized in energetic materials,yet their hybrid dust generated during production and application poses potential explosion hazards.Moreover,the synergistic explosion mechanisms remain poorl...RDX/Al mixtures are widely utilized in energetic materials,yet their hybrid dust generated during production and application poses potential explosion hazards.Moreover,the synergistic explosion mechanisms remain poorly understood,particularly at varying dust concentrations.This study systematically investigates the effects of different aluminum powder mass percentages and dust concentrations(300 g/m^(3),600 g/m^(3),900 g/m^(3))on RDX dust explosion severity,flame propagation behavior,and gaseous products.The results indicate that the maximum explosion pressure peaks at 35%RDX,65%RDX,and 80%RDX at 300 g/m^(3),600 g/m^(3),and 900 g/m^(3),respectively.Concurrently,the time for the flame to propagate to the wall(t1)reaches minimum values of 34.8 ms,25.66 ms,and 23.93 ms.The maximum rate of pressure rise is observed for pure RDX at 900 g/m^(3).Aluminum powder enhances flame propagation velocity and combustion duration,as validated by the flame propagation system.Overall,the concentrations of carbon oxides(CO+CO_(2))decrease significantly with increasing aluminum mass percentage.At 20%RDX,the concentrations decreased by 51.64%,72.31%,and 79.55%compared to pure RDX at 300 g/m^(3),600 g/m^(3),and 900 g/m^(3),respectively.Notably,N_(2)O concentration only at 300 g/m^(3)showed such a trend.It rises first and then falls at 35%RDX at 600 g/m^(3)and 900 g/m^(3).These findings elucidate the synergistic explosion mechanisms and provide critical guidelines for safe production and handling.展开更多
In this study,Schwertmannite,Akaganéite and ammoniojarosite were biosynthesized by different bacteria and characterized.The results showed that bacteria are critical in mediating the mineral formation process:the...In this study,Schwertmannite,Akaganéite and ammoniojarosite were biosynthesized by different bacteria and characterized.The results showed that bacteria are critical in mediating the mineral formation process:the morphology,crystallinity,grain size and specific surface area of each mineral varied upon different bacteria and culturing conditions.In addition,the formed minerals’elemental composition and group disparity lead to different morphology,crystallinity and subsequent adsorption performance.In particular,adsorption difference existed in iron minerals biosynthesized by different bacteria.The maximal adsorption capacities of Akaganéite,Schwertmannite and ammoniojarosite were 26.6 mg/g,17.5 mg/g and 3.90 mg/g respectively.Cr(VI)adsorption on iron-minerals involves hydrogen bonding,electrostatic interaction,and ligand exchange.The adsorption only occurred on the surface of ammoniojarosite,while for Akaganéite and Schwertmannite,the tunnel structure greatly facilitated the adsorption process and improved adsorption capacity.Thus,the molecular structure is the primary determining factor for adsorption performance.Collectively,the results can provide useful information in selecting suitable bacteria for synthesizing heavy-metal scavenging minerals according to different environmental conditions.展开更多
This study presents a significant advancement in the vibration analysis of functionally graded sandwich plates with auxetic cores by introducing a general viscoelastic foundation model that more accurately reflects th...This study presents a significant advancement in the vibration analysis of functionally graded sandwich plates with auxetic cores by introducing a general viscoelastic foundation model that more accurately reflects the complex interactions between the plate and the foundation.The novelty of this study is that the proposed viscoelastic foundation model incorporates elastic and damping effects in both the Winkler and Pasternak layers.To develop the theoretical framework for this analysis,the higher-order shear deformation theory is employed,while Hamilton's principle is used to derive the governing equations of motion.The closed-form solution is used to determine the damped vibration behaviors of the sandwich plates.The precision and robustness of the proposed mathematical model are validated through several comparison studies with existing numerical results.A detailed parametric study is conducted to investigate the influence of various parameters,including the elastic and damping coefficients of the foundation,the material gradation,and the properties of the auxetic core on the vibration behavior of the plates.The numerical results provide new insights into the vibration characteristics of sandwich plates with auxetic cores resting on viscoelastic foundation,highlighting the significant role of the two damping coefficients and auxetic cores in the visco-vibration behavior of the plates.展开更多
[Objective]Fish pose estimation(FPE)provides fish physiological information,facilitating health monitoring in aquaculture.It aids decision-making in areas such as fish behavior recognition.When fish are injured or def...[Objective]Fish pose estimation(FPE)provides fish physiological information,facilitating health monitoring in aquaculture.It aids decision-making in areas such as fish behavior recognition.When fish are injured or deficient,they often display abnormal behaviors and noticeable changes in the positioning of their body parts.Moreover,the unpredictable posture and orientation of fish during swimming,combined with the rapid swimming speed of fish,restrict the current scope of research in FPE.In this research,a FPE model named HPFPE is presented to capture the swimming posture of fish and accurately detect their key points.[Methods]On the one hand,this model incorporated the CBAM module into the HRNet framework.The attention module enhanced accuracy without adding computational complexity,while effectively capturing a broader range of contextual information.On the other hand,the model incorporated dilated convolution to increase the receptive field,allowing it to capture more spatial context.[Results and Discussions]Experiments showed that compared with the baseline method,the average precision(AP)of HPFPE based on different backbones and input sizes on the oplegnathus punctatus datasets had increased by 0.62,1.35,1.76,and 1.28 percent point,respectively,while the average recall(AR)had also increased by 0.85,1.50,1.40,and 1.00,respectively.Additionally,HPFPE outperformed other mainstream methods,including DeepPose,CPM,SCNet,and Lite-HRNet.Furthermore,when compared to other methods using the ornamental fish data,HPFPE achieved the highest AP and AR values of 52.96%,and 59.50%,respectively.[Conclusions]The proposed HPFPE can accurately estimate fish posture and assess their swimming patterns,serving as a valuable reference for applications such as fish behavior recognition.展开更多
Polymer bonded explosives(PBXs)have high energy density,excellent mechanical properties and better thermal stability.In this study,droplet microfluidic technology was used to successfully prepare HMX/TATB microspheres...Polymer bonded explosives(PBXs)have high energy density,excellent mechanical properties and better thermal stability.In this study,droplet microfluidic technology was used to successfully prepare HMX/TATB microspheres.The effects of different binder types and binder concentrations on the morphology of the microspheres were studied,and results proved that NC/GAP(1:4)provides particles a regular spherical morphology and good dispersion.Subsequently,the influence of the concentration of the dispersed phase and the flow rate of the continuous phase on the particle size distribution of the microspheres was fully studied.The microspheres had narrow particle size distribution and high spherical shape.Under optimized process conditions,HMX/TATB microspheres were prepared and compared with the physical mixtures.The X-ray diffraction,differential scanning calorimetry,flow properties,bulk density,and mechanical sensitivity of the samples were also studied.Results showed that the crystal form of the microspheres remains unchanged,and the binder maintains good compatibility with explosives.In addition,the fluidity,bulk density,real density and safety performance of the microspheres are remarkably better than the physical mixture.This study provides a new method for preparing PBX with narrow particle size distribution,high spherical shape,excellent dispersion and high bulk density.展开更多
In order to improve the measurement-precision of the gyro,the gyro experiment is completed based on gyro servo technology.The error sources of gyro servo technology are analyzed in the process of measurement,and the i...In order to improve the measurement-precision of the gyro,the gyro experiment is completed based on gyro servo technology.The error sources of gyro servo technology are analyzed in the process of measurement,and the impact of these error sources on measurement is evaluated.To eliminate interference signal existing in the sampled data of the measurement,a modified wavelet threshold filtering method is presented.The results of the simulation and measurement show that the estimation-precision of the proposed method is improvement remarkably compared with the fast Fourier transform method,and the calculation work is reduced compared with the conventional wavelet threshold filtering methods,furthermore,the phenomenon of a common threshold of "killing" is solved thoroughly.展开更多
Rich semantic information in natural language increases team efficiency in human collaboration, reduces dependence on high precision data information, and improves adaptability to dynamic environment. We propose a sem...Rich semantic information in natural language increases team efficiency in human collaboration, reduces dependence on high precision data information, and improves adaptability to dynamic environment. We propose a semantic centered cloud control framework for cooperative multi-unmanned ground vehicle(UGV) system. Firstly, semantic modeling of task and environment is implemented by ontology to build a unified conceptual architecture, and secondly, a scene semantic information extraction method combining deep learning and semantic web rule language(SWRL) rules is used to realize the scene understanding and task-level cloud task cooperation. Finally, simulation results show that the framework is a feasible way to enable autonomous unmanned systems to conduct cooperative tasks.展开更多
In this paper, a high calcium high sulfate ash as the main material, adding fly ash, lime, cement, gypsum and some modifiers to prepare autoclaved aerated concrete. The products complies with the technical requirement...In this paper, a high calcium high sulfate ash as the main material, adding fly ash, lime, cement, gypsum and some modifiers to prepare autoclaved aerated concrete. The products complies with the technical requirements of GB/T11968-2006. This paper also studies the influence of the physical methods and water ratio on autoclaved aerated concrete by high calcium high sulfate ash aerated concrete. The best ratio of water and Grinding time were found in practice study.展开更多
Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been construc...Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been constructed hydrothermally using H_(2)cpna(5-(4-carboxyphenoxy)nicotinic acid),dpea(1,2-di(4-pyridyl)ethane),dpey(1,2-di(4-pyridyl)ethylene),and zinc,cobalt,and nickel chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the triclinic system,space group P1.Compounds 1-3 show 2D layer structures.The catalytic activities in the Knoevenagel condensation reaction of these compounds were investigated.Compounds 1 and 2 exhibit effective catalytic activities in the Knoevenagel condensa-tion reaction at room temperature.For this reaction,various parameters were optimized,followed by the investiga-tion of the substrate scope.CCDC:2335676,1;2335677,2;2335678,3.展开更多
The breakage and bending of ducts result in a difficulty to cope with ventilation issues in bidirectional excavation tunnels with a long inclined shaft using a single ventilation method based on ducts.To discuss the h...The breakage and bending of ducts result in a difficulty to cope with ventilation issues in bidirectional excavation tunnels with a long inclined shaft using a single ventilation method based on ducts.To discuss the hybrid ventilation system applied in bidirectional excavation tunnels with a long inclined shaft,this study has established a full-scale computational fluid dynamics model based on field tests,the Poly-Hexcore method,and the sliding mesh technique.The distribution of wind speed,temperature field,and CO in the tunnel are taken as indices to compare the ventilation efficiency of three ventilation systems(duct,duct-ventilation shaft,duct–ventilated shaft-axial fan).The results show that the hybrid ventilation scheme based on duct-ventilation shaft–axial fan performs the best among the three ventilation systems.Compared to the duct,the wind speed and cooling rate in the tunnel are enhanced by 7.5%–30.6%and 14.1%–17.7%,respectively,for the duct-vent shaft-axial fan condition,and the volume fractions of CO are reduced by 26.9%–73.9%.This contributes to the effective design of combined ventilation for bidirectional excavation tunnels with an inclined shaft,ultimately improving the air quality within the tunnel.展开更多
A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Ea...A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Earth’s population leads to an uneven service volume distribution of access service.Moreover,the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas.To enhance the forwarding capability of satellite networks,we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall.Then,we propose a multi-region cooperative traffic scheduling algorithm.The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding,significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding.This algorithm can utilize all the global satellite resources and improve the utilization of network resources.We model the cooperative multi-region scheduling of large-scale LEO satellites.Based on the model,we build a system testbed using OMNET++to compare the proposed method with existing techniques.The simulations show that our proposed method can reduce the packet loss probability by 30%and improve the resource utilization ratio by 3.69%.展开更多
文摘This paper discusses about the purity of strengthened pure platinum wire and the development method of platinum micro wire, in order to solve the difficulties of low tensile strength, easy to break, and low rate of micro wire. And it contrasts some performance of strengthened pure platinum wire and sponge Pt wire. The researches draw a conclusion that the thermoelectric properties of strengthened pure platinum micro wire was in accordance with national standards and satisfied users' requirements.
文摘In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life.
基金University Synergy Innovation Program of Anhui Province(GXXT-2022-083)Science and Technology Plan Project of Wuhu City,China(2023kx12)Anhui Provincial Department of Education New Era Education Project(2023xscx070)。
文摘Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation.
基金financially supported by University-level key projects of Anhui University of Science and Technology(QNZD2021-04,QNZD2021-07)Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(2021yjrc22,13210572)+2 种基金Huainan Science and Technology Bureau Plan Project(2023A3111)Open Research Fund Program of Engineering Technology Research Center of Coal Resources Comprehensive Utilization(MTYJZX202204)Natural Science Research Project of Anhui Educational Committee(2023AH051184,2023AH051210)。
文摘Carbon materials with adjustable porosity,controllable het-eroatom doping and low-cost have been received considerable attention as supercapacitor electrodes.However,using carbon materials with abundant micropores,a high surface area and a high-dopant content for an aqueous su-percapacitor with a high energy output still remains a challenge.We report the easy synthesis of interconnected carbon spheres by a polymerization re-action between p-benzaldehyde and 2,6-diaminopyridine.The synthesis in-volves adjusting the mass ratio of the copolymer and KOH activator to achieve increased charge storage ability and high energy output,which are attributed to the high ion-accessible area provided by the large number of micropores,high N/O contents and rapid ion diffusion channels in the porous structure.At a PMEC∶KOH mass ratio of 1∶1,the high electrolyte ion-adsorption area(2599.76 m^(2) g^(−1))and the N/O dopant atoms of the conductive framework of a typical carbon electrode produce a superior specific capacity(303.2 F g^(−1)@0.5 A g^(−1))giving an assembled symmetric capacitor a high energy delivery of 11.3 Wh kg^(−1)@250 W kg^(−1).This study presents a simple strategy for synthesizing microporous carbon and highlights its potential use in KOH-based supercapacitors.
文摘4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to both human health and ecosystems.Herein,for the first time,we developed near-infrared(NIR)responsive upconversion luminescence nanosensor for NP detection.The Förster resonance energy transfer based upconversion nanoparticles(UCNPs)-graphene oxide sensor offers highly selective and sensitive detection of NP in linear ranges of 5−200 ng/mL and 200−1000 ng/mL under 980 nm and 808 nm excitation,respectively,with LOD at 4.2 ng/mL.The sensors were successfully tested for NP detection in real liquid milk samples with excellent recovery results.The rare-earth fluoride based upconversion luminescence nanosensor with NIR excitation wavelength,holds promise for sensing food,environmental,and biological samples due to their high sensitivity,specific recognition,low LOD,negligible autofluorescence,along with the deep penetration of NIR excitation sources.
文摘As the mining industry continues to expand and international oil prices increase,more rigorous demands are being placed on the design of mining equipment.Given this,there is an urgent need to develop new power-driven mining equipment to solve the problems of high energy consumption and insufficient power coupling of current equipment.This study proposed a design of a hybrid power system for underground Load Haul Dump(LHD).The proposed design integrated Quality Function Deployment(QFD)and Theory of Inventive Problem Solving(TRIZ).It identified 7 user requirements and 10 related technical features,formulated 11 innovative design solutions,and ultimately adopting an electric drive hybrid power scheme.This scheme effectively addressesd power transmission coupling problems and improve the efficiency of loaders.A 6 m³hybrid power loader prototype has been developed,which reduces operational energy consumption and advances the electrification and green,low-carbon evolution of mining equipment.
基金the financial support of the Shanxi Fire & Explosion-Proofing Safety Engineering and Technology Research Center, North University of China。
文摘Due to the presence of nitro groups, the dust generated during the production and utilization of energetic materials may potentially lead to dust explosion even under low-oxygen or anaerobic conditions.Considering the high energy density of energetic materials, dust explosion can cause serious production safety accidents. Therefore, it is necessary to understand the dust explosion characteristics of energetic materials and the mechanism of dust explosion. According to the literature review, among various influencing factors, the physical and chemical properties of dust are the decisive factors affecting the explosion characteristics of dust. In addition to experimental studies, numerical simulation is another important tool. However, it is subjected to certain limitations. Moreover, it is essential but challenging to fully understand the underlying mechanism. In addition, given the safety hazards posed by dust explosion, explosion suppression has attracted extensive attention for research. Depending on the medium used, there are different forms of suppression, including powder explosion suppression, water spray explosion suppression, inert gas explosion suppression, porous material explosion suppression, and vacuum chamber explosion suppression. As for the selection of explosion suppression agent, consideration must be given to the characteristics of the material. Furthermore, the above research has laid a foundation for discussing the future progress in studying dust explosion of energetic materials, with nano dust and the constraints of existing technology as the focal point.
基金the financial support of the Shanxi Fire&Explosion-Proofing Safety Engineering and Technology Research Center,North University of China。
文摘RDX/Al mixtures are widely utilized in energetic materials,yet their hybrid dust generated during production and application poses potential explosion hazards.Moreover,the synergistic explosion mechanisms remain poorly understood,particularly at varying dust concentrations.This study systematically investigates the effects of different aluminum powder mass percentages and dust concentrations(300 g/m^(3),600 g/m^(3),900 g/m^(3))on RDX dust explosion severity,flame propagation behavior,and gaseous products.The results indicate that the maximum explosion pressure peaks at 35%RDX,65%RDX,and 80%RDX at 300 g/m^(3),600 g/m^(3),and 900 g/m^(3),respectively.Concurrently,the time for the flame to propagate to the wall(t1)reaches minimum values of 34.8 ms,25.66 ms,and 23.93 ms.The maximum rate of pressure rise is observed for pure RDX at 900 g/m^(3).Aluminum powder enhances flame propagation velocity and combustion duration,as validated by the flame propagation system.Overall,the concentrations of carbon oxides(CO+CO_(2))decrease significantly with increasing aluminum mass percentage.At 20%RDX,the concentrations decreased by 51.64%,72.31%,and 79.55%compared to pure RDX at 300 g/m^(3),600 g/m^(3),and 900 g/m^(3),respectively.Notably,N_(2)O concentration only at 300 g/m^(3)showed such a trend.It rises first and then falls at 35%RDX at 600 g/m^(3)and 900 g/m^(3).These findings elucidate the synergistic explosion mechanisms and provide critical guidelines for safe production and handling.
基金Project(42277256)supported by the National Natural Science Foundation of ChinaProjects(HBKT-2021011,HBKT-2021014)supported by the Hunan Province Environmental Protection Research Program,ChinaProject(CDSKY-2023-05)supported by the Scientific Research of Project Hunan Provincial Urban Geological Survey and Monitoring Institute,China。
文摘In this study,Schwertmannite,Akaganéite and ammoniojarosite were biosynthesized by different bacteria and characterized.The results showed that bacteria are critical in mediating the mineral formation process:the morphology,crystallinity,grain size and specific surface area of each mineral varied upon different bacteria and culturing conditions.In addition,the formed minerals’elemental composition and group disparity lead to different morphology,crystallinity and subsequent adsorption performance.In particular,adsorption difference existed in iron minerals biosynthesized by different bacteria.The maximal adsorption capacities of Akaganéite,Schwertmannite and ammoniojarosite were 26.6 mg/g,17.5 mg/g and 3.90 mg/g respectively.Cr(VI)adsorption on iron-minerals involves hydrogen bonding,electrostatic interaction,and ligand exchange.The adsorption only occurred on the surface of ammoniojarosite,while for Akaganéite and Schwertmannite,the tunnel structure greatly facilitated the adsorption process and improved adsorption capacity.Thus,the molecular structure is the primary determining factor for adsorption performance.Collectively,the results can provide useful information in selecting suitable bacteria for synthesizing heavy-metal scavenging minerals according to different environmental conditions.
基金the funding of the Deanship of Graduate Studies and Scientific Research,Jazan University,Saudi Arabia,through project number:RG24-M027.
文摘This study presents a significant advancement in the vibration analysis of functionally graded sandwich plates with auxetic cores by introducing a general viscoelastic foundation model that more accurately reflects the complex interactions between the plate and the foundation.The novelty of this study is that the proposed viscoelastic foundation model incorporates elastic and damping effects in both the Winkler and Pasternak layers.To develop the theoretical framework for this analysis,the higher-order shear deformation theory is employed,while Hamilton's principle is used to derive the governing equations of motion.The closed-form solution is used to determine the damped vibration behaviors of the sandwich plates.The precision and robustness of the proposed mathematical model are validated through several comparison studies with existing numerical results.A detailed parametric study is conducted to investigate the influence of various parameters,including the elastic and damping coefficients of the foundation,the material gradation,and the properties of the auxetic core on the vibration behavior of the plates.The numerical results provide new insights into the vibration characteristics of sandwich plates with auxetic cores resting on viscoelastic foundation,highlighting the significant role of the two damping coefficients and auxetic cores in the visco-vibration behavior of the plates.
文摘[Objective]Fish pose estimation(FPE)provides fish physiological information,facilitating health monitoring in aquaculture.It aids decision-making in areas such as fish behavior recognition.When fish are injured or deficient,they often display abnormal behaviors and noticeable changes in the positioning of their body parts.Moreover,the unpredictable posture and orientation of fish during swimming,combined with the rapid swimming speed of fish,restrict the current scope of research in FPE.In this research,a FPE model named HPFPE is presented to capture the swimming posture of fish and accurately detect their key points.[Methods]On the one hand,this model incorporated the CBAM module into the HRNet framework.The attention module enhanced accuracy without adding computational complexity,while effectively capturing a broader range of contextual information.On the other hand,the model incorporated dilated convolution to increase the receptive field,allowing it to capture more spatial context.[Results and Discussions]Experiments showed that compared with the baseline method,the average precision(AP)of HPFPE based on different backbones and input sizes on the oplegnathus punctatus datasets had increased by 0.62,1.35,1.76,and 1.28 percent point,respectively,while the average recall(AR)had also increased by 0.85,1.50,1.40,and 1.00,respectively.Additionally,HPFPE outperformed other mainstream methods,including DeepPose,CPM,SCNet,and Lite-HRNet.Furthermore,when compared to other methods using the ornamental fish data,HPFPE achieved the highest AP and AR values of 52.96%,and 59.50%,respectively.[Conclusions]The proposed HPFPE can accurately estimate fish posture and assess their swimming patterns,serving as a valuable reference for applications such as fish behavior recognition.
基金supported by the National Natural Science Foundation of China(No.22005275)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(STIP,No.2019L0584)the Advantage Disciplines Climbing Plan of Shanxi Province.
文摘Polymer bonded explosives(PBXs)have high energy density,excellent mechanical properties and better thermal stability.In this study,droplet microfluidic technology was used to successfully prepare HMX/TATB microspheres.The effects of different binder types and binder concentrations on the morphology of the microspheres were studied,and results proved that NC/GAP(1:4)provides particles a regular spherical morphology and good dispersion.Subsequently,the influence of the concentration of the dispersed phase and the flow rate of the continuous phase on the particle size distribution of the microspheres was fully studied.The microspheres had narrow particle size distribution and high spherical shape.Under optimized process conditions,HMX/TATB microspheres were prepared and compared with the physical mixtures.The X-ray diffraction,differential scanning calorimetry,flow properties,bulk density,and mechanical sensitivity of the samples were also studied.Results showed that the crystal form of the microspheres remains unchanged,and the binder maintains good compatibility with explosives.In addition,the fluidity,bulk density,real density and safety performance of the microspheres are remarkably better than the physical mixture.This study provides a new method for preparing PBX with narrow particle size distribution,high spherical shape,excellent dispersion and high bulk density.
基金supported by the National Basic Research Program of China (973 Program) (973-61334)
文摘In order to improve the measurement-precision of the gyro,the gyro experiment is completed based on gyro servo technology.The error sources of gyro servo technology are analyzed in the process of measurement,and the impact of these error sources on measurement is evaluated.To eliminate interference signal existing in the sampled data of the measurement,a modified wavelet threshold filtering method is presented.The results of the simulation and measurement show that the estimation-precision of the proposed method is improvement remarkably compared with the fast Fourier transform method,and the calculation work is reduced compared with the conventional wavelet threshold filtering methods,furthermore,the phenomenon of a common threshold of "killing" is solved thoroughly.
基金supported by the National Defense Science and Technology Innovation Zone of China (193-A13-203-01-01)the Military Science Postgraduate Project of PLA (JY2020B006)。
文摘Rich semantic information in natural language increases team efficiency in human collaboration, reduces dependence on high precision data information, and improves adaptability to dynamic environment. We propose a semantic centered cloud control framework for cooperative multi-unmanned ground vehicle(UGV) system. Firstly, semantic modeling of task and environment is implemented by ontology to build a unified conceptual architecture, and secondly, a scene semantic information extraction method combining deep learning and semantic web rule language(SWRL) rules is used to realize the scene understanding and task-level cloud task cooperation. Finally, simulation results show that the framework is a feasible way to enable autonomous unmanned systems to conduct cooperative tasks.
文摘In this paper, a high calcium high sulfate ash as the main material, adding fly ash, lime, cement, gypsum and some modifiers to prepare autoclaved aerated concrete. The products complies with the technical requirements of GB/T11968-2006. This paper also studies the influence of the physical methods and water ratio on autoclaved aerated concrete by high calcium high sulfate ash aerated concrete. The best ratio of water and Grinding time were found in practice study.
文摘Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been constructed hydrothermally using H_(2)cpna(5-(4-carboxyphenoxy)nicotinic acid),dpea(1,2-di(4-pyridyl)ethane),dpey(1,2-di(4-pyridyl)ethylene),and zinc,cobalt,and nickel chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the triclinic system,space group P1.Compounds 1-3 show 2D layer structures.The catalytic activities in the Knoevenagel condensation reaction of these compounds were investigated.Compounds 1 and 2 exhibit effective catalytic activities in the Knoevenagel condensa-tion reaction at room temperature.For this reaction,various parameters were optimized,followed by the investiga-tion of the substrate scope.CCDC:2335676,1;2335677,2;2335678,3.
基金Project(52308419)supported by the National Natural Science Foundation of ChinaProject(R-5020-18)supported by the Research Grants Council,University Grants Committee of the Hong Kong Special Administrative Region(SAR),China+4 种基金Project(K-BBY1)supported by the Innovation and Technology Commission of the Hong Kong SAR Government,ChinaProject(1-W21Q)supported by the Hong Kong Polytechnic University's Postdoc Matching Fund Scheme,ChinaProject(Major Project,2021-Major-01)supported by Science and Technology Research and Development Program Project of China Railway Group LimitedProject(N2022G031)supported by the Science and Technology Research and Development Program Project of China RailwayProject(Major Project,2022-Key-22)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
基金Project(N2022G031)supported by the Science and Technology Research and Development Program Project of China RailwayProjects(2022-Key-23,2021-Special-01A)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(52308419)supported by the National Natural Science Foundation of China。
文摘The breakage and bending of ducts result in a difficulty to cope with ventilation issues in bidirectional excavation tunnels with a long inclined shaft using a single ventilation method based on ducts.To discuss the hybrid ventilation system applied in bidirectional excavation tunnels with a long inclined shaft,this study has established a full-scale computational fluid dynamics model based on field tests,the Poly-Hexcore method,and the sliding mesh technique.The distribution of wind speed,temperature field,and CO in the tunnel are taken as indices to compare the ventilation efficiency of three ventilation systems(duct,duct-ventilation shaft,duct–ventilated shaft-axial fan).The results show that the hybrid ventilation scheme based on duct-ventilation shaft–axial fan performs the best among the three ventilation systems.Compared to the duct,the wind speed and cooling rate in the tunnel are enhanced by 7.5%–30.6%and 14.1%–17.7%,respectively,for the duct-vent shaft-axial fan condition,and the volume fractions of CO are reduced by 26.9%–73.9%.This contributes to the effective design of combined ventilation for bidirectional excavation tunnels with an inclined shaft,ultimately improving the air quality within the tunnel.
基金This work was supported by the National Key R&D Program of China(2021YFB2900604).
文摘A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Earth’s population leads to an uneven service volume distribution of access service.Moreover,the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas.To enhance the forwarding capability of satellite networks,we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall.Then,we propose a multi-region cooperative traffic scheduling algorithm.The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding,significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding.This algorithm can utilize all the global satellite resources and improve the utilization of network resources.We model the cooperative multi-region scheduling of large-scale LEO satellites.Based on the model,we build a system testbed using OMNET++to compare the proposed method with existing techniques.The simulations show that our proposed method can reduce the packet loss probability by 30%and improve the resource utilization ratio by 3.69%.