期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Cooperativeα-C-H activation enabled quantitative and partial photooxidation of biomass-derived 5-hydroxymethylfurfural
1
作者 Jie Li Ye Meng +4 位作者 Yu Wen Yinyin He Putla Sudarsanam Song Yang Hu Li 《Green Energy & Environment》 2025年第5期1050-1063,共14页
Photocatalytic activation of C-H bonds is versatile but challenging for undergoing oriented conversion processes.Herein,a spatially site-isolated heterojunction(ZS-Vs/ZIS)of ZnIn2S4 with strong Lewis acidity(ZIS)and Z... Photocatalytic activation of C-H bonds is versatile but challenging for undergoing oriented conversion processes.Herein,a spatially site-isolated heterojunction(ZS-Vs/ZIS)of ZnIn2S4 with strong Lewis acidity(ZIS)and ZnS with S-vacancy(ZS-Vs)is constructed for activating α-C‒H bond and forming·O_(2)^(-)to cleave the C-H bond,respectively.ZS-Vs/ZIS displays outstanding performance in visible-light partial photooxidation of bio-based 5-hydroxymethylfurfural(HMF)to 2,5-diformylfuran(DFF)in an unprecedented yield of 95.7%at 25°C.In-situ experiments and calculations reveal that Zn sites of ZIS serve as hole enrichment to adsorb HMF for α-C‒H activation via ligand-to-metal charge transfer.Shallow trap states introduced by S-vacancy in ZS-Vs act as an electron pool to realize directed O_(2) activation into·O_(2)^(-)for breaking pre-activated α-C‒H bond in HMF to exclusively give DFF.Moreover,ZS-Vs/ZIS has good recyclability and universality in the photooxidation of various alcohols to carbonyls(86.4-95.6%yields).The synergistic C-H activation/breaking strategy exhibits high potential in targeted photocatalytic transformations. 展开更多
关键词 Biomass conversion Photocatalytic oxidation5-hydroxymethylfurfural Binary heterojunction C-H activation
在线阅读 下载PDF
Biomass valorization via electrocatalytic carbon–carbon bond cleavage
2
作者 Keping Wang Zhenyan Guo +5 位作者 Min Zhou Ying Yang Lanyun Li Hu Li Rafael Luque Shunmugavel Saravanamurugan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期542-578,共37页
Renewable electrocatalytic upgrading of biomass feedstocks into valuable chemicals is one of the promising strategies to relieve the pressure of traditional energy-based systems.Through electrocatalytic carbon–carbon... Renewable electrocatalytic upgrading of biomass feedstocks into valuable chemicals is one of the promising strategies to relieve the pressure of traditional energy-based systems.Through electrocatalytic carbon–carbon bond cleavage of high selectivity,various functionalized molecules,such as organic acids,amides,esters,and nitriles,have great potential to be accessed from biomass.However,it has merely received finite concerns and interests in the biorefinery.This review first showcases the research progress on the electrocatalytic conversion of lipid/sugar-and lignin-derived molecules(e.g.,glycerol,mesoerythritol,xylose,glucose,1-phenylethanol,and cyclohexanol)into organic acids via specific carbon–carbon bond scission processes,with focus on disclosing reaction mechanisms,recognizing actual active species,and collecting feasible modification strategies.For the guidance of further extensive studies on biomass valorization,organic transformations via a variety of reactions,including decarboxylation,ring-opening,rearrangement,reductive hydrogenation,and carboxylation,are also disclosed for the construction of similar carbon skeletons/scaffolds.The remaining challenges,prospective applications,and future objectives in terms of biomass conversion are also proposed.This review is expected to provide references to develop renewed electrocatalytic carbon–carbon bond cleavage transformation paths/strategies for biomass upgrading. 展开更多
关键词 ELECTROCATALYSIS Biomass conversion Carbon-carbon bond cleavage Organic acids
在线阅读 下载PDF
Modified electronic structure and enhanced hydroxyl adsorption make quaternary Pt-based nanosheets efficient anode electrocatalysts for formic acid-/alcohol-air fuel cells 被引量:1
3
作者 Fengling Zhao Qiang Yuan +2 位作者 Siyang Nie Liang Wu Xun Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期142-150,共9页
Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)... Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)ultrathin nanosheets is fabricated and used as high-performance anode electrocatalysts for formic acid-/alcohol-air fuel cells.The modified electronic structure of Pt,enhanced hydroxyl adsorption,and abundant exterior defects afford Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C high intrinsic anodic electrocatalytic activity to boost the power densities of direct formic acid-/methanol-/ethanol-/ethylene glycol-/glycerol-air fuel cells,and the corresponding peak power density of Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C is respectively 129.7,142.3,105.4,124.3,and 128.0 mW cm^(-2),considerably outperforming Pt/C.Operando in situ Fourier transform infrared reflection spectroscopy reveals that formic acid oxidation on Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C occurs via a CO_(2)-free direct pathway.Density functional theory calculations show that the presence of Ag,Bi,and Te in Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)suppresses CO^(*)formation while optimizing dehydrogenation steps and synergistic effect and modified Pt effectively enhance H_(2)O dissociation to improve electrocatalytic performance.This synthesis strategy can be extended to 43 other types of ultrathin multimetallic nanosheets(from ternary to octonary nanosheets),and efficiently capture precious metals(i.e.,Pd,Pt,Rh,Ru,Au,and Ag)from different water sources. 展开更多
关键词 Pt-based nanosheets Modifiedelectronic structure Enhanced hydroxyl adsorption Formicacidand alcohol oxidation Direct liquid fuel cells
在线阅读 下载PDF
Synergy of heterogeneous Co/Ni dual atoms enabling selective C-O bond scission of lignin coupling with in-situ N-functionalization 被引量:1
4
作者 Baoyu Wang Jinshu Huang +3 位作者 Hongguo Wu Ximing Yan Yuhe Liao Hu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期16-25,共10页
Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst... Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst CoNiDA@NC prepared by in-situ evaporation and acid-etching of metal species from tailor-made metal–organic frameworks was efficient for reductive upgrading of various lignin-derived phenols to cyclohexanols(88.5%–99.9%yields),which had ca.4 times higher reaction rate than the single-atom catalyst and was superior to state-of-the-art heterogeneous catalysts.The synergistic catalysis of Co/Ni dual atoms facilitated both hydrogen dissociation and hydrogenolysis steps,and could optimize adsorption configuration of lignin-derived methoxylated phenols to further favor the Csp^(2)-OCH_(3)cleavage,as elaborated by theoretical calculations.Notably,the CoNi_(DA)@NC catalyst was highly recyclable,and exhibited excellent demethoxylation performance(77.1%yield)in real lignin monomer mixtures.Via in-situ cascade conversion processes assisted by dual-atom catalysis,various high-value N-containing chemicals,including caprolactams and cyclohexylamines,could be produced from lignin. 展开更多
关键词 Biomass conversion Heterogeneous catalysis LIGNIN Dual-atom catalyst Selective C-ocleavage
在线阅读 下载PDF
Efficient catalytic conversion of carbohydrates into 5-ethoxymethylfurfural over MIL-101-based sulfated porous coordination polymers 被引量:6
5
作者 Xiaofang Liu Hu Li +5 位作者 Hu Pan Heng Zhang Shan Huang Kaili Yang Wei Xue Song Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第3期523-530,共8页
In this work, a series of MIL-101-SO3H(x) polymeric materials were prepared and further used for the first time as efficient heterogeneous catalysts for the conversion of fructose-based carbohydrates into 5-ethoxyme... In this work, a series of MIL-101-SO3H(x) polymeric materials were prepared and further used for the first time as efficient heterogeneous catalysts for the conversion of fructose-based carbohydrates into 5-ethoxymethylfurfural(EMF) in a renewable mixed solvent system consisting of ethanol and tetrahydrofuran(THF). The influence of –SO3H content on the acidity as well as on the catalytic activity of the porous coordination polymers in EMF production was also studied. High EMF yields of 67.7% and 54.2% could be successively obtained from fructose and inulin in the presence of MIL-101-SO;H(100) at 130 °C for 15 h.The catalyst could be reused for five times without significant loss of its activity and the recovery process was facile and simple. This work provides a new platform by application of porous coordination polymers(PCPs) for the production of the potential liquid fuel molecule EMF from biomass in a sustainable solvent system. 展开更多
关键词 Porous coordination polymers Biofuels 5-ethoxymethylfurfural MIL-101-SO_3H
在线阅读 下载PDF
Solid Acid Used as Highly Efficient Catalyst for Esterification of Free Fatty Acids with Alcohols 被引量:6
6
作者 Zhang Qiuyun Li Hu +4 位作者 Qin Wenting Liu Xiaofang Zhang Yuping Xue Wei Yang Song 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2013年第1期19-24,共6页
Anovel solid acid catalyst, which was prepared from sodium alginate (SA) and metal chlorides and characterized with XRD and FT-IR spectrometry, was used for the preparation of biodiesel via esterification reaction. Th... Anovel solid acid catalyst, which was prepared from sodium alginate (SA) and metal chlorides and characterized with XRD and FT-IR spectrometry, was used for the preparation of biodiesel via esterification reaction. The study results showed that the aluminum-alginate complex prepared in a cheap and easy way exhibited high catalytic activity, and a 92.6% conversion of methyl oleate was obtained in the presence of 4m% of catalyst dosage upon refluxing for 3h of methanol and acid mixed in a molar ratio of 10:1. It should be noted that the catalyst can be applied to the esterification reaction of fatty acids with various carbon chain length on methanol or different short chain alcohols, indicating that the catalyst is suitable for the preparation of biodiesel from waste oils with a high acid value. 展开更多
关键词 sodium alginate solid acid ESTERIFICATION BIODIESEL
在线阅读 下载PDF
Ammonia borane-enabled hydrogen transfer processes:Insights into catalytic strategies and mechanisms 被引量:1
7
作者 Wenfeng Zhao Hu Li +2 位作者 Heng Zhang Song Yang Anders Riisager 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期948-971,共24页
Transfer hydrogenation(TH) with in situ generated hydrogen donor is of great importance in reduction reactions, and an alternative strategy to traditional hydrogenation processes involving pressurized molecular hydrog... Transfer hydrogenation(TH) with in situ generated hydrogen donor is of great importance in reduction reactions, and an alternative strategy to traditional hydrogenation processes involving pressurized molecular hydrogen. Ammonia borane(NH3BH3, AB) is a promising material of hydrogen storage, and it has attracted much attention in reductive organic transformations owing to its high activity, good atom economy, nontoxicity, sustainability, and ease of transport and storage. This review focuses on summarizing the recent progress of AB-mediated TH reactions of diverse substrates including nitro compounds, nitriles, imines, alkenes, alkynes, carbonyl compounds(ketones and aldehydes), carbon dioxide,and N-and O-heterocycles. Syntheses protocols(metal-containing and metal-free), the effect of reaction parameters, product distribution, and variation of reactivity are surveyed, and the mechanism of each reaction involving the action mode of AB as well as structure-activity relationships is discussed in detail. Finally, perspectives are presented to highlight the challenges and opportunities for AB-enabled TH reactions of unsaturated compounds. 展开更多
关键词 Transfer hydrogenation Ammonia borane Hydrogen donor Reaction mechanism Catalytic strategies
在线阅读 下载PDF
Cooperative catalysis of Co single atoms and nanoparticles enables selective CAr-OCH_(3) cleavage for sustainable production of lignin-based cyclohexanols 被引量:1
8
作者 Baoyu Wang Peng Zhou +3 位作者 Ximing Yan Hu Li Hongguo Wu Zehui Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期535-549,共15页
In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of ... In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of lignin-derived o-methoxyphenols(lignin oil)to cyclohexanols(up to 97%yield)via cascade demethoxylation and dearomatization.Theoretical calculations elaborated that the dual-size Co catalyst exhibited a cooperative effect in the selective demethoxylation process,in which the Co NPs could initially dissociate hydrogen at lower energies while Co1remarkably facilitated the cleavage of the C_(Ar)-OCH_(3)bond.Moreover,the intramolecular hydrogen bonds formed in the omethoxy-containing phenols were found to result in a decrease in the bond energy of the C_(Ar)-OCH_(3)bond,which was more prone to be activated by the dual-size Co sites.Notably,the pre-hydrogenated intermediate(e.g.,2-methoxycyclohexanol from guaiacol)is difficult to undergo demethoxylation,indicating that the selective C_(Ar)-OCH_(3)bond cleavage is a prerequisite for the synthesis of cyclohexanols.The 0.2Co_(1-NPs)@NC catalyst was highly recyclable with a neglect decline in activity during five consecutive cycles.This cooperative catalytic strategy based on the metal size effect opens new avenues for biomass upgrading via enhanced C-O bond cleavage of high selectivity. 展开更多
关键词 Biomass conversion Heterogeneous catalysis C-O bond cleavage Lignin valorization CYCLOHEXANOLS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部