Poly(D,L-lactide) was synthesized by indirect method from D,L-lactic acid and characterized by infrared spectrum and proton nuclear magnetic resonance. The influences of monomer purity, initiator concentration, polyme...Poly(D,L-lactide) was synthesized by indirect method from D,L-lactic acid and characterized by infrared spectrum and proton nuclear magnetic resonance. The influences of monomer purity, initiator concentration, polymerization temperature and polymerization time on the relative molecular mass of poly(D, L-lactide) were investigated. The polylactide was made into porous materials by using solvent-casting particulate-leaching method. Under the optimized conditions, polylactides with a viscosity average molecular mass up to 1.82×105 are obtained and the results are fairly reproducible. Scanning electron microscope observation indicates that the sample is highly porous and well-distributed with good interconnections between pores and the pore size of porous materials is in the range from 200 μm to 500 μm and it can be used as scaffold for bone tissue engineering.展开更多
The Al-Ni-Y alloy powder was prepared by rapid solidification technology of inert gas atomization. The diameter of amorphous powder is less than 12 μm. The effects of atomization gas on cooling velocity, morphology,...The Al-Ni-Y alloy powder was prepared by rapid solidification technology of inert gas atomization. The diameter of amorphous powder is less than 12 μm. The effects of atomization gas on cooling velocity, morphology, microstructure and microhardness of powder and fine powder ratio were investigated.The results show that the morphology, microstructure and microhardness of powder and fine powder ratio are affected by cooling velocity changed through atomization gas. The cooling velocity of inert gas atomization is more than 1×10~4 K/s. The larger the cooling velocity, the finer the powder, and the smoother the surface of powder; the smaller the diameter of powder, the larger the microhardness of powder.展开更多
基金Project(50174059) supported by the National Natural Science Foundation of China
文摘Poly(D,L-lactide) was synthesized by indirect method from D,L-lactic acid and characterized by infrared spectrum and proton nuclear magnetic resonance. The influences of monomer purity, initiator concentration, polymerization temperature and polymerization time on the relative molecular mass of poly(D, L-lactide) were investigated. The polylactide was made into porous materials by using solvent-casting particulate-leaching method. Under the optimized conditions, polylactides with a viscosity average molecular mass up to 1.82×105 are obtained and the results are fairly reproducible. Scanning electron microscope observation indicates that the sample is highly porous and well-distributed with good interconnections between pores and the pore size of porous materials is in the range from 200 μm to 500 μm and it can be used as scaffold for bone tissue engineering.
文摘The Al-Ni-Y alloy powder was prepared by rapid solidification technology of inert gas atomization. The diameter of amorphous powder is less than 12 μm. The effects of atomization gas on cooling velocity, morphology, microstructure and microhardness of powder and fine powder ratio were investigated.The results show that the morphology, microstructure and microhardness of powder and fine powder ratio are affected by cooling velocity changed through atomization gas. The cooling velocity of inert gas atomization is more than 1×10~4 K/s. The larger the cooling velocity, the finer the powder, and the smoother the surface of powder; the smaller the diameter of powder, the larger the microhardness of powder.