The stability of matrix graphite under neutron irradiation and in corrosive environments is crucial for the safe operation of molten salt reactors(MSRs).Raman spectroscopy and a slow positron beam were employed to inv...The stability of matrix graphite under neutron irradiation and in corrosive environments is crucial for the safe operation of molten salt reactors(MSRs).Raman spectroscopy and a slow positron beam were employed to investigate the effects of He ion irradiation fluences and subsequent annealing on the microstructure and defects of the matrix graphite.He ions with 500 keV energy and fluences ranging from 1.1×10^(15)ions∕cm^(2)to 3.5×10^(17)ions∕cm^(2)were used to simulate neutron irradiation at 300 K.The samples with an irradiation fluence of 3.5×10^(16)ions∕cm^(2)were subjected to isochronal annealing at different temperatures(573 K,873 K and 1173 K)for 3 h.The Raman results revealed that the D peak gradually increased,whereas the intrinsic G peak decreased with increasing irradiation fluence.At the same irradiation fluence,the D peak gradually decreased,whereas the intrinsic G peak increased with increasing annealing temperature.Slow positron beam analysis demonstrated that the density or size of irradiation defects(vacancy type)increased with higher irradiation fluence,but decreased rapidly with increasing annealing temperature.The Raman spectral analysis of sample cross sections subjected to high irradiation fluences revealed the emergence of amorphization precisely at the depth where ion damage was most pronounced,whereas the surface retained its crystalline structure.Raman and positron annihilation analyses indicated that the matrix graphite exhibited good irradiation resistance to He ions at 300 K.However,vacancy-type defects induced by He ion irradiation exhibit poor thermal stability and can be easily removed during annealing.展开更多
The GECAM series of satellites utilizes LaBr_(3)(Ce),LaBr_(3)(Ce,Sr),and NaI(Tl)crystals as sensitive materials for gamma-ray detectors(GRDs).To investigate the nonlinearity in the detection of low-energy gamma rays a...The GECAM series of satellites utilizes LaBr_(3)(Ce),LaBr_(3)(Ce,Sr),and NaI(Tl)crystals as sensitive materials for gamma-ray detectors(GRDs).To investigate the nonlinearity in the detection of low-energy gamma rays and address the errors in the calibration of the E-C relationship,comprehensive tests and comparative studies of the three aforementioned crystals were conducted using Compton electrons,radioactive sources,and mono-energetic X-rays.The nonlinearity test results of the Compton electrons and X-rays demonstrated substantial differences,with all three crystals presenting a higher nonlinearity for X/-rays than for Compton electrons.Despite the LaBr_(3)(Ce)and LaBr_(3)(Ce,Sr)crystals having higher absolute light yields,they exhibited a noticeable nonlinear decrease in the light yield,especially at energies below 400 keV.The NaI(Tl)crystal demonstrated an"excess"light output in the 6-200 keV range,reaching a maximum"excess"of 9.2%at 30 keV in the X-ray testing and up to 15.5%at 14 keV during Compton electron testing,indicating a significant advantage in the detection of low-energy gamma rays.Furthermore,we explored the underlying causes of the observed nonlinearity in these crystals.This study not only elucidates the detector responses of GECAM,but also initiates a comprehensive investigation of the nonlinearity of domestically produced lanthanum bromide and sodium iodide crystals.展开更多
This article presents a prototype of beam position and phase measurement(BPPM)electronics designed for the LINAC in China Accelerator Driven Sub-critical system(ADS).The signals received from the Beam Position Monitor...This article presents a prototype of beam position and phase measurement(BPPM)electronics designed for the LINAC in China Accelerator Driven Sub-critical system(ADS).The signals received from the Beam Position Monitor(BPM)detectors are narrow pulses with a repetition frequency of 162.5 MHz and a dynamic range more than40 dB.Based on the high-speed high-resolution Analog-to-Digital conversion technique,the input RF signals are directly converted to In-phase and Quadrature-phase(IQ)streams through under-sampling,which simplifies both the analog and digital processing circuits.All signal processing is integrated in one single FPGA,in which real-time beam position,phase and current can be obtained.A series of simulations and tests have been conducted to evaluate the performance.Initial test results indicate that this prototype achieves a phase resolution better than 0.1 degree and a position resolution better than 20μm over a 40 dB dynamic range with the bandwidth of 780 kHz,which is well beyond the application requirements.展开更多
This paper is aimed at detecting the neutron spectrum of^(241)Am–Be, a widely used neutron source, with the SP9 ~3He proportional counter, which is a multi-sphere spectrometer system of eight thermal neutron detector...This paper is aimed at detecting the neutron spectrum of^(241)Am–Be, a widely used neutron source, with the SP9 ~3He proportional counter, which is a multi-sphere spectrometer system of eight thermal neutron detectors embedded in eight polyethylene(PE) spheres of varying diameters. The transport processes of a neutron in the multi-sphere spectrometer are simulated using the Geant4 code. Two sets of response functions of the PE spheres are obtained for calculating the^(241)Am–Be neutron spectrum.Response Function 1 utilizes the thermal neutron scattering model G4 Neutron HPThermal Scattering for neutron energies of ≤4 eV, and Response Function 2 has no thermal treatment. Neutron spectra of an^(241)Am–Be neutron source are measured and compared to those calculated by using the response functions. The results show that response function with thermal treatment is more accurate and closer to the real spectrum.展开更多
Au/Ni/n-type 4H-SiC Schottky alpha particle detectors are fabricated and annealed at temperatures between 400℃ and 700 ℃ to investigate the effects of thermal stability of the Schottky contact on the structural and ...Au/Ni/n-type 4H-SiC Schottky alpha particle detectors are fabricated and annealed at temperatures between 400℃ and 700 ℃ to investigate the effects of thermal stability of the Schottky contact on the structural and electrical properties of the detectors. At the annealing temperature of 500 ℃, the two nickel silicides (i.e., Ni31Sil2 and Ni2Si) are formed at the interface and result in the formation of an inhomogeneous Schottky barrier. By increasing the annealing temperature, the Ni31Sil2 transforms into the more stable Ni2Si. The structural evolution of the Schottky contact directly affects the electrical properties and alpha particle energy resolutions of the detectors. A better energy resolution of 2.60% is obtained for 5.48-MeV alpha particles with the detector after being annealed at 600 ℃. As a result, the Au/Ni/n-type 4H-SiC Schottky detector shows a good performance after thermal treatment at temperatures up to 700℃.展开更多
The DArk Matter Particle Explorer(DAMPE)is a satellite-borne detector for high-energy cosmic rays and y-rays.To fully understand the detector performance and obtain reliable physical results,extensive simulations of t...The DArk Matter Particle Explorer(DAMPE)is a satellite-borne detector for high-energy cosmic rays and y-rays.To fully understand the detector performance and obtain reliable physical results,extensive simulations of the detector are necessary.The simulations are particularly important for the data analysis of cosmic ray nuclei,which relies closely on the hadronic and nuclear interactions of particles in the detector material.Widely adopted simulation softwares include the GEANT4 and FLUKA,both of which have been implemented for the DAMPE simulation tool.Here we describe the simulation tool of DAMPE and compare the results of proton shower properties in the calorimeter from the two simulation softwares.Such a comparison gives an estimate of the most significant uncertainties of our proton spectral analysis.展开更多
Open heavy flavors and quarkonia are unique probes of the hot–dense medium produced in heavy-ion collisions. Their production in p+p collisions also constitutes an important test of QCD. In this paper, we review sele...Open heavy flavors and quarkonia are unique probes of the hot–dense medium produced in heavy-ion collisions. Their production in p+p collisions also constitutes an important test of QCD. In this paper, we review selected results on the open heavy flavors and quarkonia generated in the p+p and heavy-ion collisions at the Relativistic Heavy Ion Collider. The physical implications are also discussed.展开更多
High precision time measurement is required in the readout of the neutron wall and TOF walls in the external target experiment of the Cooling Storage Ring(CSR) project in the Heavy Ion Research Facility in Lanzhou(HIR...High precision time measurement is required in the readout of the neutron wall and TOF walls in the external target experiment of the Cooling Storage Ring(CSR) project in the Heavy Ion Research Facility in Lanzhou(HIRFL).Considering the time walk correction,both time and charge are measured in the readout electronics.In this 16-channel measurement module,time and charge information are digitized by TDCs at the same time based on the Time-Over-Threshold(TOT) method;meanwhile,by employing high-density ASIC chips,the electronics complexity is effectively reduced.Test results indicate that this module achieves a time resolution better than 25 ps and a charge resolution better than 5%over the input amplitude range from 50 mV to 3V.展开更多
“A Craftsman Must Sharpen His Tools to Do His Job,”said Confucius.Nuclear detection and readout techniques are the foundation of particle physics,nuclear physics,and particle astrophysics to reveal the nature of the...“A Craftsman Must Sharpen His Tools to Do His Job,”said Confucius.Nuclear detection and readout techniques are the foundation of particle physics,nuclear physics,and particle astrophysics to reveal the nature of the universe.Also,they are being increasingly used in other disciplines like nuclear power generation,life sciences,environmental sciences,medical sciences,etc.The article reviews the short history,recent development,and trend of nuclear detection and readout techniques,covering Semiconductor Detector,Gaseous Detector,Scintillation Detector,Cherenkov Detector,Transition Radiation Detector,and Readout Techniques.By explaining the principle and using examples,we hope to help the interested reader underst and this research field and bring exciting information to the community.展开更多
The readout electronics for a prototype soft X-ray spectrometer based on silicon drift detector(SDD),for precisely measuring the energy and arrival time of X-ray photons is presented in this paper.The system mainly co...The readout electronics for a prototype soft X-ray spectrometer based on silicon drift detector(SDD),for precisely measuring the energy and arrival time of X-ray photons is presented in this paper.The system mainly consists of two parts,i.e.,an analog electronics section(including a pre-amplifier,a signal shaper and filter,a constant fraction timing circuit,and a peak hold circuit)and a digital electronics section(including an ADC and a TDC).Test results with X-ray sources show that an energy dynamic range of 1-10 keV with an integral nonlinearity of less than 0.1%can be achieved,and the energy resolution is better than 160 eV @ 5.9 keV FWHM.Using a waveform generator,test results also indicate that time resolution of the electronics system is about 3.7 ns,which is much less than the transit time spread of SDD(<100 ns)and satisfies the requirements of future applications.展开更多
Readout electronics is developed for a prototype time-of-flight(TOF) ion composition spectrometer for in situ measurement of the mass/charge distributions of major ion species from 200 to 100 ke V/e in space plasma.By...Readout electronics is developed for a prototype time-of-flight(TOF) ion composition spectrometer for in situ measurement of the mass/charge distributions of major ion species from 200 to 100 ke V/e in space plasma.By utilizing a constant fraction discriminator(CFD) and time-to-digital converter(TDC), challenging dynamic range measurements were performed with high time resolution and event rates. CFD was employed to discriminate the TOF signals from the micro-channel plate and channel electron multipliers. TDC based on the combination of counter and OR-gate delay chain was designed in a highreliability flash field programmable gate array. Owing to the non-uniformity of the delay chain, a correction algorithm based on integral nonlinearity compensation was implemented to reduce the time uncertainty. The test results showed that the electronics achieved a low timingerror of < 200 ps in the input range from 35 to 500 m V for the CFD, and a time resolution of ~550 ps with time uncertainty < 180 ps after correction and a time range of6.4 ls for the TDC. The TOF spectrum from an electron beam experiment of the impacting N_2 gas further indicated the good performance of this readout electronic.展开更多
A real-time Bonner sphere spectrometer(BSS)has been developed for spectral neutron measurements with the HL-2A Tokamak.To correct and verify the accuracy of the neutron spectrum from the BSS,the BSS system was calibra...A real-time Bonner sphere spectrometer(BSS)has been developed for spectral neutron measurements with the HL-2A Tokamak.To correct and verify the accuracy of the neutron spectrum from the BSS,the BSS system was calibrated using monoenergetic neutron beams in the energy range of 100 keV–5 MeV.The response function of the BSS was corrected based on the calibration results,and the corrected BSS system was verified by unfolding monoenergetic neutron spectra.Fusion neutron spectra on the HL-2A have been obtained from the calibrated BSS system for the first time.展开更多
Readout electronics is developed for a prototype spectrometer for in situ measurement of low-energy ions of30 e V/e–20 ke V/e in the solar wind plasma.A low-noise preamplifier/discriminator(A111F) is employed for eac...Readout electronics is developed for a prototype spectrometer for in situ measurement of low-energy ions of30 e V/e–20 ke V/e in the solar wind plasma.A low-noise preamplifier/discriminator(A111F) is employed for each channel to process the signal from micro-channel plate(MCP) detectors.A high-voltage(HV) supply solution based on a HV module and a HV optocoupler is adopted to generate a fast sweeping HV and a fixed HV.Due to limitation of telemetry bandwidth in space communication,an algorithm is implemented in an FPGA(field programmable gate array) to compress the raw data.Test results show that the electronics achieves a 1 MHz event rate and a large input dynamic range of 95 p C.A slew rate of 0.8 V/ls and an integral nonlinearity of 0.7-LSB for the sweeping HV,and a precision of less than 0.8 % for the fixed HV are obtained.A vacuum beam test shows an energy resolution of 12 ± 0.7 % full width at half maximum(FWHM) is achieved,and noise counts are less than10/sec,indicating that the performance meets the physical requirement.展开更多
The ring imaging Cherenkov(RICH) detector for particle identification(PID) is being evaluated for the future super tau-charm facility(STCF) complex. In this work, the prototype readout electronics for the RICH PID det...The ring imaging Cherenkov(RICH) detector for particle identification(PID) is being evaluated for the future super tau-charm facility(STCF) complex. In this work, the prototype readout electronics for the RICH PID detector is designed. The prototype RICH PID detector is based on a thick gas electron multiplier combined with a micromegas detector for Cherenkov light detection. Considering that there will be a large number(~ 690,000) of detector channels in future RICH detector, the readout electronics faces many challenges to precisely measuring time and charge information, such as reducing the noise,increasing density, and improving precision. The requirements of the readout electronics are explored, the downselection of the ASICs is made and thus a prototype readout electronics is designed and implemented. Tests are also conducted to evaluate the performance of the prototype readout electronics, and the results indicate that the time resolution is better than ~ 1 ns(RMS) when the input charge is greater than ~ 12 fC based on the APV25chip, while the time resolution is better than ~ 1 ns(RMS) at an input charge of over ~ 48 fC based on the AGET and STCF ASIC chips, and the equivalent noise charge is better than ~ 0.5 fC(RMS) @ 20 pF based on the three ASICs. The test results indicate that the prototype readout electronics design meets the requirement of the future RICH PID detector and thus provides a reference for future engineering.展开更多
In this work,a new hybrid MPGD consisting of two GEM foils and a metallic mesh was proposed.Based on the simulation studies,this design can significantly reduce the rise time of signal and has a better performance in ...In this work,a new hybrid MPGD consisting of two GEM foils and a metallic mesh was proposed.Based on the simulation studies,this design can significantly reduce the rise time of signal and has a better performance in respect of particle identification compared with the triple GEM design.The gain with various voltages setting was computed in order to provide us references for future experiment.The simulation results also show that the time and space resolution compared to the triple GEM detector are also improved.The time and space resolution of hybrid detector with Ar/CO_2(70/30) and Ar/isobutane(95/5) were investigated for various drift electric field intensities.This new hybrid detector shows excellent potential for both fundamental research and imaging applications.展开更多
To satisfy high-precision,widc-rangc,and real-time neutron flux measurement requirements by the International Thermonuclear Experimental Reactor(ITF.R),a data acquisition and control system based on fission chamber de...To satisfy high-precision,widc-rangc,and real-time neutron flux measurement requirements by the International Thermonuclear Experimental Reactor(ITF.R),a data acquisition and control system based on fission chamber detectors and fast controller technology,has been developed for neutron flux monitor in ITER Equatorial Port#7.The signal processing units which arc based on a field programmable gate array and the PXI Express platform arc designed to realize the neutron flux measurement with I ms time resolution and a fast response less than 0.2 ms,together with real-time timestamps provided by a timing hoard.The application of the wide-range algorithm allows the system to measure up to 10^10cps with a relative error of less than 5%.Furthermore,the system is managed and controlled by a software based on the Experimental Physics and Industrial Control System,compliant with COntrol.Data Access and Communication architecture.展开更多
A novel surface muon capture system with a large acceptance was proposed based on the China spallation neutron source(CSNS).This system was designed using a superconducting solenoid where a long graphite target was pu...A novel surface muon capture system with a large acceptance was proposed based on the China spallation neutron source(CSNS).This system was designed using a superconducting solenoid where a long graphite target was put inside it.Firstly,the spin polarization evolution was studied in a constant uniform magnetic field.As the magnetic field can interact with the spin of the surface muon,both the spin polarization and production rate of the surface muons collected by the new capture system were calculated by the G4beamline.Simulation results showed that the surface muons could still keep a high spin polarization([90%)with different magnetic fields(0–10 T),and the larger magnetic field is,the more surface muons can be captured.Finally,the proton phase space,Courant–Snyder parameters,and intensities of surface muons of different beam fractions were given with magnetic fields of 0 and 5T.The solenoid capture system can focus proton and surface muon beams and collect p?and l?particles.It can also provide an intense energetic positron source.展开更多
A novel real time fast electron bremsstrahlung (FEB) diagnostic system based on the lutetium yttrium oxyorthosilicate scintillators (LYSO) and silicon photomultipliers (SiPM) has been developed for tokamak.The diagnos...A novel real time fast electron bremsstrahlung (FEB) diagnostic system based on the lutetium yttrium oxyorthosilicate scintillators (LYSO) and silicon photomultipliers (SiPM) has been developed for tokamak.The diagnostic system is dedicated to study the FEB emission in the hard x-ray (HXR) energy range between 10 and 200 keV during the lower hybrid current drive.The system consists of a detection module and three data acquisition and processing (DAP)boards.The detection module consists of annulus LYSO-SiPM detector array and a 12-channel preamplifier module.The DAP boards upload the data to the host computer for displaying and storing through PXI bus.The time and space resolutions of the system are 10 ms and 4 cm,respectively.The experimental results can show the evolution over time and the spatial distribution of FEB.This paper presents the system performance and typical discharge results.展开更多
The mid-rapidity transverse momentum spectra of charmed mesons in Pb–Pb and pp(p)collisions are analyzed using the Tsallis–Pareto distribution derived from non-extensive statistics.We provide uniform descriptions of...The mid-rapidity transverse momentum spectra of charmed mesons in Pb–Pb and pp(p)collisions are analyzed using the Tsallis–Pareto distribution derived from non-extensive statistics.We provide uniform descriptions of both small and large systems over a wide range of collision energies and hadron transverse momenta.By establishing the relationship between the event multiplicity and Tsallis parameters,we observe that there is a signifi-cant linear relationship between the thermal temperature and Tsallis q parameter in Pb–Pb collisions at √sNN=2.76 TeV and 5.02 TeV.Further,the slope of the T–(q-1)parameter plot is positively correlated with the hadron mass.In addition,charmed mesons have a higher thermal temperature than light hadrons at the same q-1,indicat-ing that the charm flavor requires a higher temperature to reach the same degree of non-extensivity as light flavors in heavy-ion collisions.The same fit is applied to the trans-verse momentum spectra of charmed mesons in pp(p)collisions over a large energy range using the Tsallis–Pareto distribution.It is found that the thermal temperature increases with system energy,whereas the q parameter becomes saturated at the pp(p)limit,q-1=0.142±0.010.In addition,the results of most peripheral Pb–Pb collisions are found to approach the pp(p)limit,which suggests that more peripheral heavy-ion collisions are less affected by the medium and more similar to pp(p)collisions.展开更多
An experimental muon source(EMuS) will be built at the China Spallation Neutron Source(CSNS). In phase I of CSNS, it has been decided that EMuS will provide a proton beam of 5 kW and 1.6 GeV to generate muon beams. A ...An experimental muon source(EMuS) will be built at the China Spallation Neutron Source(CSNS). In phase I of CSNS, it has been decided that EMuS will provide a proton beam of 5 kW and 1.6 GeV to generate muon beams. A 128-channel muon spin rotation/relaxation/resonance(μSR) spectrometer is proposed as a prototype surface muon spectrometer in a sub-branch of EMuS. The prototype spectrometer includes a detection system, sample environment, and supporting mechanics. The current design has two rings located at the forward and backward directions of the muon spin with 64 detectors per ring. The simulation shows that the highest asymmetry of approximately 0.28 is achieved by utilizing two 10-mm-thick brass degraders. To obtain the optimal asymmetry, the two-ring structure is updated to a four-ring structure with 32 segments in each ring. An asymmetry of 0.42 is obtained through the simulation, which is higher than that of all the current μSR spectrometers in the world.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12005289,52072397)State Key Laboratory of Nuclear Detection and Electronics,University of Science and Technology of China(SKLPDE-KF-202316).
文摘The stability of matrix graphite under neutron irradiation and in corrosive environments is crucial for the safe operation of molten salt reactors(MSRs).Raman spectroscopy and a slow positron beam were employed to investigate the effects of He ion irradiation fluences and subsequent annealing on the microstructure and defects of the matrix graphite.He ions with 500 keV energy and fluences ranging from 1.1×10^(15)ions∕cm^(2)to 3.5×10^(17)ions∕cm^(2)were used to simulate neutron irradiation at 300 K.The samples with an irradiation fluence of 3.5×10^(16)ions∕cm^(2)were subjected to isochronal annealing at different temperatures(573 K,873 K and 1173 K)for 3 h.The Raman results revealed that the D peak gradually increased,whereas the intrinsic G peak decreased with increasing irradiation fluence.At the same irradiation fluence,the D peak gradually decreased,whereas the intrinsic G peak increased with increasing annealing temperature.Slow positron beam analysis demonstrated that the density or size of irradiation defects(vacancy type)increased with higher irradiation fluence,but decreased rapidly with increasing annealing temperature.The Raman spectral analysis of sample cross sections subjected to high irradiation fluences revealed the emergence of amorphization precisely at the depth where ion damage was most pronounced,whereas the surface retained its crystalline structure.Raman and positron annihilation analyses indicated that the matrix graphite exhibited good irradiation resistance to He ions at 300 K.However,vacancy-type defects induced by He ion irradiation exhibit poor thermal stability and can be easily removed during annealing.
基金This work was supported by the National Key Research and Development Program(Nos.2022YFB3503600 and 2021YFA0718500)Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDA15360102)National Natural Science Foundation of China(Nos.12273042 and 12075258).
文摘The GECAM series of satellites utilizes LaBr_(3)(Ce),LaBr_(3)(Ce,Sr),and NaI(Tl)crystals as sensitive materials for gamma-ray detectors(GRDs).To investigate the nonlinearity in the detection of low-energy gamma rays and address the errors in the calibration of the E-C relationship,comprehensive tests and comparative studies of the three aforementioned crystals were conducted using Compton electrons,radioactive sources,and mono-energetic X-rays.The nonlinearity test results of the Compton electrons and X-rays demonstrated substantial differences,with all three crystals presenting a higher nonlinearity for X/-rays than for Compton electrons.Despite the LaBr_(3)(Ce)and LaBr_(3)(Ce,Sr)crystals having higher absolute light yields,they exhibited a noticeable nonlinear decrease in the light yield,especially at energies below 400 keV.The NaI(Tl)crystal demonstrated an"excess"light output in the 6-200 keV range,reaching a maximum"excess"of 9.2%at 30 keV in the X-ray testing and up to 15.5%at 14 keV during Compton electron testing,indicating a significant advantage in the detection of low-energy gamma rays.Furthermore,we explored the underlying causes of the observed nonlinearity in these crystals.This study not only elucidates the detector responses of GECAM,but also initiates a comprehensive investigation of the nonlinearity of domestically produced lanthanum bromide and sodium iodide crystals.
基金Supported by the Knowledge Innovation Program of The Chinese Academy of Sciences(KJCX2-YW-N27)the National Natural Science Foundation of China(No.11205153,11185176,and 10875119)the Fundamental Research Funds for the Central Universities(WK2030040029)
文摘This article presents a prototype of beam position and phase measurement(BPPM)electronics designed for the LINAC in China Accelerator Driven Sub-critical system(ADS).The signals received from the Beam Position Monitor(BPM)detectors are narrow pulses with a repetition frequency of 162.5 MHz and a dynamic range more than40 dB.Based on the high-speed high-resolution Analog-to-Digital conversion technique,the input RF signals are directly converted to In-phase and Quadrature-phase(IQ)streams through under-sampling,which simplifies both the analog and digital processing circuits.All signal processing is integrated in one single FPGA,in which real-time beam position,phase and current can be obtained.A series of simulations and tests have been conducted to evaluate the performance.Initial test results indicate that this prototype achieves a phase resolution better than 0.1 degree and a position resolution better than 20μm over a 40 dB dynamic range with the bandwidth of 780 kHz,which is well beyond the application requirements.
基金supported by ITER Plan National Major Project(No.2008GB109000)the Introduces Talents Scientific Research Project of Guizhou University(2014,No.32)
文摘This paper is aimed at detecting the neutron spectrum of^(241)Am–Be, a widely used neutron source, with the SP9 ~3He proportional counter, which is a multi-sphere spectrometer system of eight thermal neutron detectors embedded in eight polyethylene(PE) spheres of varying diameters. The transport processes of a neutron in the multi-sphere spectrometer are simulated using the Geant4 code. Two sets of response functions of the PE spheres are obtained for calculating the^(241)Am–Be neutron spectrum.Response Function 1 utilizes the thermal neutron scattering model G4 Neutron HPThermal Scattering for neutron energies of ≤4 eV, and Response Function 2 has no thermal treatment. Neutron spectra of an^(241)Am–Be neutron source are measured and compared to those calculated by using the response functions. The results show that response function with thermal treatment is more accurate and closer to the real spectrum.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675198,61574026,and 11405017)the National Key Research and Development Program of China(Grant Nos.2016YFB0400600 and 2016YFB0400601)+1 种基金the Natural Science Foundation of Liaoning Province of China(Grant Nos.201602453 and 201602176)the China Postdoctoral Science Foundation(Grant No.2016M591434)
文摘Au/Ni/n-type 4H-SiC Schottky alpha particle detectors are fabricated and annealed at temperatures between 400℃ and 700 ℃ to investigate the effects of thermal stability of the Schottky contact on the structural and electrical properties of the detectors. At the annealing temperature of 500 ℃, the two nickel silicides (i.e., Ni31Sil2 and Ni2Si) are formed at the interface and result in the formation of an inhomogeneous Schottky barrier. By increasing the annealing temperature, the Ni31Sil2 transforms into the more stable Ni2Si. The structural evolution of the Schottky contact directly affects the electrical properties and alpha particle energy resolutions of the detectors. A better energy resolution of 2.60% is obtained for 5.48-MeV alpha particles with the detector after being annealed at 600 ℃. As a result, the Au/Ni/n-type 4H-SiC Schottky detector shows a good performance after thermal treatment at temperatures up to 700℃.
基金Supported by the National Key Research and Development Program of China(Grant No.2016YFA0400200)the National Natural Science Foundation of China(Grant Nos.11722328,11773085,U1738127,U1738138,U1738205,U1738207,and 11851305)+4 种基金the 100 Talents Program of Chinese Academy of Sciencesthe Youth Innovation Promotion Association CASthe Program for Innovative Talents and Entrepreneur in Jiangsusupported by the Swiss National Science Foundation(SNSF),Switzerlandthe National Institute for Nuclear Physics(INFN),Italy。
文摘The DArk Matter Particle Explorer(DAMPE)is a satellite-borne detector for high-energy cosmic rays and y-rays.To fully understand the detector performance and obtain reliable physical results,extensive simulations of the detector are necessary.The simulations are particularly important for the data analysis of cosmic ray nuclei,which relies closely on the hadronic and nuclear interactions of particles in the detector material.Widely adopted simulation softwares include the GEANT4 and FLUKA,both of which have been implemented for the DAMPE simulation tool.Here we describe the simulation tool of DAMPE and compare the results of proton shower properties in the calorimeter from the two simulation softwares.Such a comparison gives an estimate of the most significant uncertainties of our proton spectral analysis.
基金the National Key R&D Program of China(Nos.2018YFE0104900 and 2018YFE0205200)the National Natural Science Foundation of China(Nos.11675168,11890712 and 11720101001)。
文摘Open heavy flavors and quarkonia are unique probes of the hot–dense medium produced in heavy-ion collisions. Their production in p+p collisions also constitutes an important test of QCD. In this paper, we review selected results on the open heavy flavors and quarkonia generated in the p+p and heavy-ion collisions at the Relativistic Heavy Ion Collider. The physical implications are also discussed.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KJCX2-YW-N27)the National Natural Science Foundation of China(No.11079003)
文摘High precision time measurement is required in the readout of the neutron wall and TOF walls in the external target experiment of the Cooling Storage Ring(CSR) project in the Heavy Ion Research Facility in Lanzhou(HIRFL).Considering the time walk correction,both time and charge are measured in the readout electronics.In this 16-channel measurement module,time and charge information are digitized by TDCs at the same time based on the Time-Over-Threshold(TOT) method;meanwhile,by employing high-density ASIC chips,the electronics complexity is effectively reduced.Test results indicate that this module achieves a time resolution better than 25 ps and a charge resolution better than 5%over the input amplitude range from 50 mV to 3V.
基金supported by the National Natural Science Foundation of China(No.12222512,U2032209,12075045,12335011,1875097,11975257,62074146,11975115,12205374,12305210,11975292,12005276,12005278,12375193,12227805,12235012,12375191,12005279)the National Key Research and Development Program of China(2021YFA1601300)+13 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB34000000)the CAS Pioneer Hundred Talent Programthe CAS“Light of West China”Programthe Natural Science Foundation of Liaoning Province(No.101300261)the Dalian Science and Technology Innovation Fund(2023JJ12GX013)the Special Projects of the Central Government in Guidance of Local Science and Technology Development(Research and development of three-dimensional prospecting technology based on Cosmic-ray muons)(YDZX20216200001297)the Science and Technology Planning Project of Gansu(20JR10RA645)the Lanzhou University Talent Cooperation Research Funds sponsored by both Lanzhou City(561121203)the Gansu provincial science and technology plan projects for talents(054000029)the Beijing Natural Science Foundation(No.1232033)the Beijing Hope Run Special Fund of Cancer Foundation of China(No.LC2021B23)the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.GJJSTD20210009)the Youth Innovation Promotion Association CAS(2021450)。
文摘“A Craftsman Must Sharpen His Tools to Do His Job,”said Confucius.Nuclear detection and readout techniques are the foundation of particle physics,nuclear physics,and particle astrophysics to reveal the nature of the universe.Also,they are being increasingly used in other disciplines like nuclear power generation,life sciences,environmental sciences,medical sciences,etc.The article reviews the short history,recent development,and trend of nuclear detection and readout techniques,covering Semiconductor Detector,Gaseous Detector,Scintillation Detector,Cherenkov Detector,Transition Radiation Detector,and Readout Techniques.By explaining the principle and using examples,we hope to help the interested reader underst and this research field and bring exciting information to the community.
基金supported by the National Natural Science Foundation of China(Grant No.11205154)
文摘The readout electronics for a prototype soft X-ray spectrometer based on silicon drift detector(SDD),for precisely measuring the energy and arrival time of X-ray photons is presented in this paper.The system mainly consists of two parts,i.e.,an analog electronics section(including a pre-amplifier,a signal shaper and filter,a constant fraction timing circuit,and a peak hold circuit)and a digital electronics section(including an ADC and a TDC).Test results with X-ray sources show that an energy dynamic range of 1-10 keV with an integral nonlinearity of less than 0.1%can be achieved,and the energy resolution is better than 160 eV @ 5.9 keV FWHM.Using a waveform generator,test results also indicate that time resolution of the electronics system is about 3.7 ns,which is much less than the transit time spread of SDD(<100 ns)and satisfies the requirements of future applications.
基金supported by the National Key Scientific Instrument and Equipment Development Projects of the National Natural Science Foundation of China(No.41327802)China Mars Project
文摘Readout electronics is developed for a prototype time-of-flight(TOF) ion composition spectrometer for in situ measurement of the mass/charge distributions of major ion species from 200 to 100 ke V/e in space plasma.By utilizing a constant fraction discriminator(CFD) and time-to-digital converter(TDC), challenging dynamic range measurements were performed with high time resolution and event rates. CFD was employed to discriminate the TOF signals from the micro-channel plate and channel electron multipliers. TDC based on the combination of counter and OR-gate delay chain was designed in a highreliability flash field programmable gate array. Owing to the non-uniformity of the delay chain, a correction algorithm based on integral nonlinearity compensation was implemented to reduce the time uncertainty. The test results showed that the electronics achieved a low timingerror of < 200 ps in the input range from 35 to 500 m V for the CFD, and a time resolution of ~550 ps with time uncertainty < 180 ps after correction and a time range of6.4 ls for the TDC. The TOF spectrum from an electron beam experiment of the impacting N_2 gas further indicated the good performance of this readout electronic.
基金supported by the National Natural Science Foundation of China(Nos.11375195 and 11575184)
文摘A real-time Bonner sphere spectrometer(BSS)has been developed for spectral neutron measurements with the HL-2A Tokamak.To correct and verify the accuracy of the neutron spectrum from the BSS,the BSS system was calibrated using monoenergetic neutron beams in the energy range of 100 keV–5 MeV.The response function of the BSS was corrected based on the calibration results,and the corrected BSS system was verified by unfolding monoenergetic neutron spectra.Fusion neutron spectra on the HL-2A have been obtained from the calibrated BSS system for the first time.
基金supported by the National Key Scientific Instrument and Equipment Development Projects of the National Natural Science Foundation of China(No.41327802)the Fundamental Research Funds for the Central Universities(WK2030040066)
文摘Readout electronics is developed for a prototype spectrometer for in situ measurement of low-energy ions of30 e V/e–20 ke V/e in the solar wind plasma.A low-noise preamplifier/discriminator(A111F) is employed for each channel to process the signal from micro-channel plate(MCP) detectors.A high-voltage(HV) supply solution based on a HV module and a HV optocoupler is adopted to generate a fast sweeping HV and a fixed HV.Due to limitation of telemetry bandwidth in space communication,an algorithm is implemented in an FPGA(field programmable gate array) to compress the raw data.Test results show that the electronics achieves a 1 MHz event rate and a large input dynamic range of 95 p C.A slew rate of 0.8 V/ls and an integral nonlinearity of 0.7-LSB for the sweeping HV,and a precision of less than 0.8 % for the fixed HV are obtained.A vacuum beam test shows an energy resolution of 12 ± 0.7 % full width at half maximum(FWHM) is achieved,and noise counts are less than10/sec,indicating that the performance meets the physical requirement.
基金supported by the international partnership program of the Chinese Academy of Sciences under Grant No.211134KYSB20200057Double First-Class university project foundation of USTC+1 种基金Youth Innovation Promotion Association CASCAS Center for Excellence in Particle Physics(CCEPP)。
文摘The ring imaging Cherenkov(RICH) detector for particle identification(PID) is being evaluated for the future super tau-charm facility(STCF) complex. In this work, the prototype readout electronics for the RICH PID detector is designed. The prototype RICH PID detector is based on a thick gas electron multiplier combined with a micromegas detector for Cherenkov light detection. Considering that there will be a large number(~ 690,000) of detector channels in future RICH detector, the readout electronics faces many challenges to precisely measuring time and charge information, such as reducing the noise,increasing density, and improving precision. The requirements of the readout electronics are explored, the downselection of the ASICs is made and thus a prototype readout electronics is designed and implemented. Tests are also conducted to evaluate the performance of the prototype readout electronics, and the results indicate that the time resolution is better than ~ 1 ns(RMS) when the input charge is greater than ~ 12 fC based on the APV25chip, while the time resolution is better than ~ 1 ns(RMS) at an input charge of over ~ 48 fC based on the AGET and STCF ASIC chips, and the equivalent noise charge is better than ~ 0.5 fC(RMS) @ 20 pF based on the three ASICs. The test results indicate that the prototype readout electronics design meets the requirement of the future RICH PID detector and thus provides a reference for future engineering.
基金Supported by the National Natural Science Foundation of China(Nos.11135002,11275235,11405077 and 11575073)
文摘In this work,a new hybrid MPGD consisting of two GEM foils and a metallic mesh was proposed.Based on the simulation studies,this design can significantly reduce the rise time of signal and has a better performance in respect of particle identification compared with the triple GEM design.The gain with various voltages setting was computed in order to provide us references for future experiment.The simulation results also show that the time and space resolution compared to the triple GEM detector are also improved.The time and space resolution of hybrid detector with Ar/CO_2(70/30) and Ar/isobutane(95/5) were investigated for various drift electric field intensities.This new hybrid detector shows excellent potential for both fundamental research and imaging applications.
文摘To satisfy high-precision,widc-rangc,and real-time neutron flux measurement requirements by the International Thermonuclear Experimental Reactor(ITF.R),a data acquisition and control system based on fission chamber detectors and fast controller technology,has been developed for neutron flux monitor in ITER Equatorial Port#7.The signal processing units which arc based on a field programmable gate array and the PXI Express platform arc designed to realize the neutron flux measurement with I ms time resolution and a fast response less than 0.2 ms,together with real-time timestamps provided by a timing hoard.The application of the wide-range algorithm allows the system to measure up to 10^10cps with a relative error of less than 5%.Furthermore,the system is managed and controlled by a software based on the Experimental Physics and Industrial Control System,compliant with COntrol.Data Access and Communication architecture.
基金supported by the National Natural Science Foundation of China(No.11527811)
文摘A novel surface muon capture system with a large acceptance was proposed based on the China spallation neutron source(CSNS).This system was designed using a superconducting solenoid where a long graphite target was put inside it.Firstly,the spin polarization evolution was studied in a constant uniform magnetic field.As the magnetic field can interact with the spin of the surface muon,both the spin polarization and production rate of the surface muons collected by the new capture system were calculated by the G4beamline.Simulation results showed that the surface muons could still keep a high spin polarization([90%)with different magnetic fields(0–10 T),and the larger magnetic field is,the more surface muons can be captured.Finally,the proton phase space,Courant–Snyder parameters,and intensities of surface muons of different beam fractions were given with magnetic fields of 0 and 5T.The solenoid capture system can focus proton and surface muon beams and collect p?and l?particles.It can also provide an intense energetic positron source.
基金National Natural Science Foundation of China (No. 11575184).
文摘A novel real time fast electron bremsstrahlung (FEB) diagnostic system based on the lutetium yttrium oxyorthosilicate scintillators (LYSO) and silicon photomultipliers (SiPM) has been developed for tokamak.The diagnostic system is dedicated to study the FEB emission in the hard x-ray (HXR) energy range between 10 and 200 keV during the lower hybrid current drive.The system consists of a detection module and three data acquisition and processing (DAP)boards.The detection module consists of annulus LYSO-SiPM detector array and a 12-channel preamplifier module.The DAP boards upload the data to the host computer for displaying and storing through PXI bus.The time and space resolutions of the system are 10 ms and 4 cm,respectively.The experimental results can show the evolution over time and the spatial distribution of FEB.This paper presents the system performance and typical discharge results.
基金This is supported by the National Key Research and Development Program of China(Nos.2018YFE0205200 and 2018YFE0104700)National Natural Science Foundation of China(Nos.11890712 and 12061141008)+1 种基金Strategic Priority Research Program of CAS(No.XDB34030000)Anhui Provincial Natural Science Foundation(No.1808085J02).
文摘The mid-rapidity transverse momentum spectra of charmed mesons in Pb–Pb and pp(p)collisions are analyzed using the Tsallis–Pareto distribution derived from non-extensive statistics.We provide uniform descriptions of both small and large systems over a wide range of collision energies and hadron transverse momenta.By establishing the relationship between the event multiplicity and Tsallis parameters,we observe that there is a signifi-cant linear relationship between the thermal temperature and Tsallis q parameter in Pb–Pb collisions at √sNN=2.76 TeV and 5.02 TeV.Further,the slope of the T–(q-1)parameter plot is positively correlated with the hadron mass.In addition,charmed mesons have a higher thermal temperature than light hadrons at the same q-1,indicat-ing that the charm flavor requires a higher temperature to reach the same degree of non-extensivity as light flavors in heavy-ion collisions.The same fit is applied to the trans-verse momentum spectra of charmed mesons in pp(p)collisions over a large energy range using the Tsallis–Pareto distribution.It is found that the thermal temperature increases with system energy,whereas the q parameter becomes saturated at the pp(p)limit,q-1=0.142±0.010.In addition,the results of most peripheral Pb–Pb collisions are found to approach the pp(p)limit,which suggests that more peripheral heavy-ion collisions are less affected by the medium and more similar to pp(p)collisions.
基金supported by the National Natural Science Foundation of China(No.11527811)the Key Program of State Key Laboratory of Particle Detection and ElectronicsA part of the work performed in the UKRI ISIS Detector Group was sponsored by the China Scholarship Council
文摘An experimental muon source(EMuS) will be built at the China Spallation Neutron Source(CSNS). In phase I of CSNS, it has been decided that EMuS will provide a proton beam of 5 kW and 1.6 GeV to generate muon beams. A 128-channel muon spin rotation/relaxation/resonance(μSR) spectrometer is proposed as a prototype surface muon spectrometer in a sub-branch of EMuS. The prototype spectrometer includes a detection system, sample environment, and supporting mechanics. The current design has two rings located at the forward and backward directions of the muon spin with 64 detectors per ring. The simulation shows that the highest asymmetry of approximately 0.28 is achieved by utilizing two 10-mm-thick brass degraders. To obtain the optimal asymmetry, the two-ring structure is updated to a four-ring structure with 32 segments in each ring. An asymmetry of 0.42 is obtained through the simulation, which is higher than that of all the current μSR spectrometers in the world.