As a representative transition metal dichalcogenides(TMD),NiTe_(2)has an ultra-fast optical response,high carrier mobility,and excellent environmental stability.It has a broad application prospect in the fields of ene...As a representative transition metal dichalcogenides(TMD),NiTe_(2)has an ultra-fast optical response,high carrier mobility,and excellent environmental stability.It has a broad application prospect in the fields of ener-gy,biomedicine,optoelectronic devices,and so on.At present,there have been scant reports on the application of NiTe_(2)in the field of ultrafast photonics.In this work,NiTe_(2)was synthesized by chemical vapor deposition(CVD)and integrated with a tapered optical fiber to achieve mode-locking in an erbium-doped fiber laser(EDFL)and a thu-lium-doped fiber laser(TDFL).The mode-locked EDFL exhibited a pulse width of 678 fs and an output power of 3.92 mW.The pulse width of mode-locked TDFL was estimated to have a pulse width of 694 fs with an output power of 21.64 mW.These results demonstrate that NiTe_(2)is an effective saturable absorber material with potential applica-tions in the field of ultrafast optics.展开更多
Broadband near-infrared(NIR)luminescent materials have shown great promise in applications such as optical communication,biomedicine,and optoelectronic devices.However,the current research is focused on phos⁃phors and...Broadband near-infrared(NIR)luminescent materials have shown great promise in applications such as optical communication,biomedicine,and optoelectronic devices.However,the current research is focused on phos⁃phors and glasses,and it is important to develop broadband NIR luminescent nanomaterials.Here,we report an erbi⁃um-sensitized core-shell nanocrystal design for broadband NIR emission.Based on the structural design with suitable dopings of Tm^(3+)and Ho^(3+),the broadband NIR emission covering 1.5-2.1μm region is achieved under 980 nm and 808 nm excitations.Moreover,the emission intensity is further enhanced by introducing Yb^(3+)and Nd^(3+)into the sam⁃ple,respectively,and the energy transfer processes between them are systematically discussed.Our results present a novel approach for developing broadband NIR luminescent materials and devices.展开更多
Strain-rate frequency superposition(SRFS) is often employed to probe the low-frequency behavior of soft solids under oscillatory shear in anticipated linear response. However, physical interpretation of an apparently ...Strain-rate frequency superposition(SRFS) is often employed to probe the low-frequency behavior of soft solids under oscillatory shear in anticipated linear response. However, physical interpretation of an apparently well-overlapped master curve generated by SRFS has to combine with nonlinear analysis techniques such as Fourier transform rheology and stress decomposition method. The benefit of SRFS is discarded when some inconsistencies of the shifted master curves with the canonical linear response are observed. In this work, instead of evaluating the SRFS in full master curves, two criteria were proposed to decompose the original SRFS data and to delete the bad experimental data. Application to Carabopol suspensions indicates that good master curves could be constructed based upon the modified data and the high-frequency deviations often observed in original SRFS master curves are eliminated. The modified SRFS data also enable a better quantitative description and the evaluation of the apparent structural relaxation time by the two-mode fractional Maxwell model.展开更多
基金Supported by Guangdong Basic and Applied Basic Research Fund,China(2024A1515012429)。
文摘As a representative transition metal dichalcogenides(TMD),NiTe_(2)has an ultra-fast optical response,high carrier mobility,and excellent environmental stability.It has a broad application prospect in the fields of ener-gy,biomedicine,optoelectronic devices,and so on.At present,there have been scant reports on the application of NiTe_(2)in the field of ultrafast photonics.In this work,NiTe_(2)was synthesized by chemical vapor deposition(CVD)and integrated with a tapered optical fiber to achieve mode-locking in an erbium-doped fiber laser(EDFL)and a thu-lium-doped fiber laser(TDFL).The mode-locked EDFL exhibited a pulse width of 678 fs and an output power of 3.92 mW.The pulse width of mode-locked TDFL was estimated to have a pulse width of 694 fs with an output power of 21.64 mW.These results demonstrate that NiTe_(2)is an effective saturable absorber material with potential applica-tions in the field of ultrafast optics.
文摘Broadband near-infrared(NIR)luminescent materials have shown great promise in applications such as optical communication,biomedicine,and optoelectronic devices.However,the current research is focused on phos⁃phors and glasses,and it is important to develop broadband NIR luminescent nanomaterials.Here,we report an erbi⁃um-sensitized core-shell nanocrystal design for broadband NIR emission.Based on the structural design with suitable dopings of Tm^(3+)and Ho^(3+),the broadband NIR emission covering 1.5-2.1μm region is achieved under 980 nm and 808 nm excitations.Moreover,the emission intensity is further enhanced by introducing Yb^(3+)and Nd^(3+)into the sam⁃ple,respectively,and the energy transfer processes between them are systematically discussed.Our results present a novel approach for developing broadband NIR luminescent materials and devices.
基金Project(11372263)supported by the National Natural Science Foundation of China
文摘Strain-rate frequency superposition(SRFS) is often employed to probe the low-frequency behavior of soft solids under oscillatory shear in anticipated linear response. However, physical interpretation of an apparently well-overlapped master curve generated by SRFS has to combine with nonlinear analysis techniques such as Fourier transform rheology and stress decomposition method. The benefit of SRFS is discarded when some inconsistencies of the shifted master curves with the canonical linear response are observed. In this work, instead of evaluating the SRFS in full master curves, two criteria were proposed to decompose the original SRFS data and to delete the bad experimental data. Application to Carabopol suspensions indicates that good master curves could be constructed based upon the modified data and the high-frequency deviations often observed in original SRFS master curves are eliminated. The modified SRFS data also enable a better quantitative description and the evaluation of the apparent structural relaxation time by the two-mode fractional Maxwell model.