Cloud manufacturing is a specific implementation form of the "Internet + manufacturing" strategy. Why and how to develop cloud manufacturing platform(CMP), however, remains the key concern of both platform o...Cloud manufacturing is a specific implementation form of the "Internet + manufacturing" strategy. Why and how to develop cloud manufacturing platform(CMP), however, remains the key concern of both platform operators and users. A microscopic model is proposed to investigate advantages and diffusion forces of CMP through exploration of its diffusion process and mechanism. Specifically, a three-stage basic evolution process of CMP is innovatively proposed. Then, based on this basic process, a more complex CMP evolution model has been established in virtue of complex network theory, with five diffusion forces identified. Thereafter, simulations on CMP diffusion have been conducted. The results indicate that, CMP possesses better resource utilization,user satisfaction, and enterprise utility. Results of simulation on impacts of different diffusion forces show that both the time required for CMP to reach an equilibrium state and the final network size are affected simultaneously by the five diffusion forces. All these analyses indicate that CMP could create an open online cooperation environment and turns out to be an effective implementation of the "Internet + manufacturing" strategy.展开更多
The existing software bug localization models treat the source file as natural language, which leads to the loss of syntactical and structure information of the source file. A bug localization model based on syntactic...The existing software bug localization models treat the source file as natural language, which leads to the loss of syntactical and structure information of the source file. A bug localization model based on syntactical and semantic information of source code is proposed. Firstly, abstract syntax tree(AST) is divided based on node category to obtain statement sequence. The statement tree is encoded into vectors to capture lexical and syntactical knowledge at the statement level.Secondly, the source code is transformed into vector representation by the sequence naturalness of the statement. Therefore,the problem of gradient vanishing and explosion caused by a large AST size is obviated when using AST to the represent source code. Finally, the correlation between bug reports and source files are comprehensively analyzed from three aspects of syntax, semantics and text to locate the buggy code. Experiments show that compared with other standard models, the proposed model improves the performance of bug localization, and it has good advantages in mean reciprocal rank(MRR), mean average precision(MAP) and Top N Rank.展开更多
基金supported by the National High-Tech R&D Program,China(2015AA042101)
文摘Cloud manufacturing is a specific implementation form of the "Internet + manufacturing" strategy. Why and how to develop cloud manufacturing platform(CMP), however, remains the key concern of both platform operators and users. A microscopic model is proposed to investigate advantages and diffusion forces of CMP through exploration of its diffusion process and mechanism. Specifically, a three-stage basic evolution process of CMP is innovatively proposed. Then, based on this basic process, a more complex CMP evolution model has been established in virtue of complex network theory, with five diffusion forces identified. Thereafter, simulations on CMP diffusion have been conducted. The results indicate that, CMP possesses better resource utilization,user satisfaction, and enterprise utility. Results of simulation on impacts of different diffusion forces show that both the time required for CMP to reach an equilibrium state and the final network size are affected simultaneously by the five diffusion forces. All these analyses indicate that CMP could create an open online cooperation environment and turns out to be an effective implementation of the "Internet + manufacturing" strategy.
基金supported by the National Key R&D Program of China (2018YFB1702700)。
文摘The existing software bug localization models treat the source file as natural language, which leads to the loss of syntactical and structure information of the source file. A bug localization model based on syntactical and semantic information of source code is proposed. Firstly, abstract syntax tree(AST) is divided based on node category to obtain statement sequence. The statement tree is encoded into vectors to capture lexical and syntactical knowledge at the statement level.Secondly, the source code is transformed into vector representation by the sequence naturalness of the statement. Therefore,the problem of gradient vanishing and explosion caused by a large AST size is obviated when using AST to the represent source code. Finally, the correlation between bug reports and source files are comprehensively analyzed from three aspects of syntax, semantics and text to locate the buggy code. Experiments show that compared with other standard models, the proposed model improves the performance of bug localization, and it has good advantages in mean reciprocal rank(MRR), mean average precision(MAP) and Top N Rank.