In various environmental studies, geoscience variables not only have the characteristics of time and space, but also are influenced by other variables. Multivariate spatiotemporal variables can improve the accuracy of...In various environmental studies, geoscience variables not only have the characteristics of time and space, but also are influenced by other variables. Multivariate spatiotemporal variables can improve the accuracy of spatiotemporal estimation. Taking the monthly mean ground observation data of the period 1960–2013 precipitation in the Xinjiang Uygur Autonomous Region, China, the spatiotemporal distribution from January to December in 2013 was respectively estimated by space-time Kriging and space-time CoKriging. Modeling spatiotemporal direct variograms and a cross variogram was a key step in space-time CoKriging. Taking the monthly mean air relative humidity of the same site at the same time as the covariates, the spatiotemporal direct variograms and the spatiotemporal cross variogram of the monthly mean precipitation for the period 1960–2013 were modeled. The experimental results show that the space-time CoKriging reduces the mean square error by 31.46% compared with the space-time ordinary Kriging. The correlation coefficient between the estimated values and the observed values of the space-time CoKriging is 5.07% higher than the one of the space-time ordinary Kriging. Therefore, a space-time CoKriging interpolation with air humidity as a covariate improves the interpolation accuracy.展开更多
Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-de...Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-dependency in this kind of pattern is still not well handled by existing work. Therefore, in this study, the multi-scale regionalization is embedded into the spatio-temporal teleconnection pattern mining between anomalous sea and land climatic events. A modified scale-space clustering algorithm is first developed to group climate sequences into multi-scale climate zones. Then, scale variance analysis method is employed to identify climate zones at characteristic scales, indicating the main characteristics of geographical phenomena. Finally, by using the climate zones identified at characteristic scales, a time association rule mining algorithm based on sliding time windows is employed to discover spatio-temporal teleconnection patterns. Experiments on sea surface temperature, sea level pressure, land precipitation and land temperature datasets show that many patterns obtained by the multi-scale approach are coincident with prior knowledge, indicating that this method is effective and reasonable. In addition, some unknown teleconnection patterns discovered from the multi-scale approach can be further used to guide the prediction of land climate.展开更多
Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing st...Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing studies have extended from bi-temporal data pair to multi-temporal datasets to derive more plentiful information,there are still two problems to be solved in practical applications.First,change indicators constructed from incoherent feature only cannot characterize the change objects accurately.Second,the results of pixel-level methods are usually presented in the form of the noisy binary map,making the spatial change not intuitive and the temporal change of a single pixel meaningless.In this study,we propose an unsupervised man-made objects change detection framework using both coherent and incoherent features derived from multi-temporal SAR images.The coefficients of variation in timeseries incoherent features and the man-made object index(MOI)defined with coherent features are first combined to identify the initial change pixels.Afterwards,an improved spatiotemporal clustering algorithm is developed based on density-based spatial clustering of applications with noise(DBSCAN)and dynamic time warping(DTW),which can transform the initial results into noiseless object-level patches,and take the cluster center as a representative of the man-made object to determine the change pattern of each patch.An experiment with a stack of 10 TerraSAR-X images in Stripmap mode demonstrated that this method is effective in urban scenes and has the potential applicability to wide area change detection.展开更多
In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification probl...In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.展开更多
Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are eas...Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are easy to be blocked or reflected by obstacles such as walls and furniture.A resilient tightly-coupled inertial navigation system(INS)/UWB integration is proposed and implemented for indoor UAV navigation in this paper.A factor graph optimization(FGO)method enhanced by resilient stochastic model is established to cope with the indoor challenging scenarios.To deal with the impact of UWB non-line-of-sight(NLOS)signals and noise uncertainty,the conventional neural net-works(CNNs)are introduced into the stochastic modelling to improve the resilience and reliability of the integration.Based on the status that the UWB features are limited,a‘two-phase'CNNs structure was designed and implemented:one for signal classification and the other one for measurement noise prediction.The proposed resilient FGO method is tested on flighting UAV platform under actual indoor challenging scenario.Compared to classical FGO method,the overall positioning errors can be decreased from about 0.60 m to centimeter-level under signal block and reflection scenarios.The superiority of resilient FGO which effectively verified in constrained environment is pretty important for positioning accuracy and integrity for indoor navigation task.展开更多
Knowing the locations of nodes in wireless sensor networks (WSN) is essential for many applications. Nodes in a WSN can have multiple capabilities and exploiting one or more of the capabilities can help to solve the l...Knowing the locations of nodes in wireless sensor networks (WSN) is essential for many applications. Nodes in a WSN can have multiple capabilities and exploiting one or more of the capabilities can help to solve the localization problem. In this paper, we assume that each node in a WSN has the capability of distance measurement and present a location computation technique called linear intersection for node localization. We also propose an applied localization model using linear intersection and do some concerned experiments to estimate the location computation algorithm.展开更多
Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The ...Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The performance of existing long-term navigation algorithm is limited by the cumulative error of inertial sensors, disturbed local magnetic field, and complex motion modes of the pedestrian. This paper develops a robust data and physical model dual-driven based trajectory estimation(DPDD-TE) framework, which can be applied for long-term navigation tasks. A Bi-directional Long Short-Term Memory(Bi-LSTM) based quasi-static magnetic field(QSMF) detection algorithm is developed for extracting useful magnetic observation for heading calibration, and another Bi-LSTM is adopted for walking speed estimation by considering hybrid human motion information under a specific time period. In addition, a data and physical model dual-driven based multi-source fusion model is proposed to integrate basic INS mechanization and multi-level constraint and observations for maintaining accuracy under long-term navigation tasks, and enhanced by the magnetic and trajectory features assisted loop detection algorithm. Real-world experiments indicate that the proposed DPDD-TE outperforms than existing algorithms, and final estimated heading and positioning accuracy indexes reaches 5° and less than 2 m under the time period of 30 min, respectively.展开更多
基金Project(17D02)supported by the Open Fund of State Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,ChinaProject supported by the State Key Laboratory of Satellite Navigation System and Equipment Technology,China
文摘In various environmental studies, geoscience variables not only have the characteristics of time and space, but also are influenced by other variables. Multivariate spatiotemporal variables can improve the accuracy of spatiotemporal estimation. Taking the monthly mean ground observation data of the period 1960–2013 precipitation in the Xinjiang Uygur Autonomous Region, China, the spatiotemporal distribution from January to December in 2013 was respectively estimated by space-time Kriging and space-time CoKriging. Modeling spatiotemporal direct variograms and a cross variogram was a key step in space-time CoKriging. Taking the monthly mean air relative humidity of the same site at the same time as the covariates, the spatiotemporal direct variograms and the spatiotemporal cross variogram of the monthly mean precipitation for the period 1960–2013 were modeled. The experimental results show that the space-time CoKriging reduces the mean square error by 31.46% compared with the space-time ordinary Kriging. The correlation coefficient between the estimated values and the observed values of the space-time CoKriging is 5.07% higher than the one of the space-time ordinary Kriging. Therefore, a space-time CoKriging interpolation with air humidity as a covariate improves the interpolation accuracy.
基金Projects(41601424,41171351)supported by the National Natural Science Foundation of ChinaProject(2012CB719906)supported by the National Basic Research Program of China(973 Program)+2 种基金Project(14JJ1007)supported by the Hunan Natural Science Fund for Distinguished Young Scholars,ChinaProject(2017M610486)supported by the China Postdoctoral Science FoundationProjects(2017YFB0503700,2017YFB0503601)supported by the National Key Research and Development Foundation of China
文摘Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-dependency in this kind of pattern is still not well handled by existing work. Therefore, in this study, the multi-scale regionalization is embedded into the spatio-temporal teleconnection pattern mining between anomalous sea and land climatic events. A modified scale-space clustering algorithm is first developed to group climate sequences into multi-scale climate zones. Then, scale variance analysis method is employed to identify climate zones at characteristic scales, indicating the main characteristics of geographical phenomena. Finally, by using the climate zones identified at characteristic scales, a time association rule mining algorithm based on sliding time windows is employed to discover spatio-temporal teleconnection patterns. Experiments on sea surface temperature, sea level pressure, land precipitation and land temperature datasets show that many patterns obtained by the multi-scale approach are coincident with prior knowledge, indicating that this method is effective and reasonable. In addition, some unknown teleconnection patterns discovered from the multi-scale approach can be further used to guide the prediction of land climate.
基金supported by the National Natural Science Foundation of China(41774006)the Comparative Study of Geo-environment and Geohazards in the Yangtze River Delta and the Red River Delta Projectthe Shanghai Science and Technology Development Foundation(20dz1201200)。
文摘Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing studies have extended from bi-temporal data pair to multi-temporal datasets to derive more plentiful information,there are still two problems to be solved in practical applications.First,change indicators constructed from incoherent feature only cannot characterize the change objects accurately.Second,the results of pixel-level methods are usually presented in the form of the noisy binary map,making the spatial change not intuitive and the temporal change of a single pixel meaningless.In this study,we propose an unsupervised man-made objects change detection framework using both coherent and incoherent features derived from multi-temporal SAR images.The coefficients of variation in timeseries incoherent features and the man-made object index(MOI)defined with coherent features are first combined to identify the initial change pixels.Afterwards,an improved spatiotemporal clustering algorithm is developed based on density-based spatial clustering of applications with noise(DBSCAN)and dynamic time warping(DTW),which can transform the initial results into noiseless object-level patches,and take the cluster center as a representative of the man-made object to determine the change pattern of each patch.An experiment with a stack of 10 TerraSAR-X images in Stripmap mode demonstrated that this method is effective in urban scenes and has the potential applicability to wide area change detection.
基金Supported in part by Science & Technology Department of Shanghai (05dz15004)
文摘In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.
基金National Natural Science Foundation of China(Grant No.62203111)the Open Research Fund of State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University(Grant No.21P01)the Foundation of Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology,Ministry of Education,China(Grant No.SEU-MIAN-202101)to provide fund for conducting experiments。
文摘Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are easy to be blocked or reflected by obstacles such as walls and furniture.A resilient tightly-coupled inertial navigation system(INS)/UWB integration is proposed and implemented for indoor UAV navigation in this paper.A factor graph optimization(FGO)method enhanced by resilient stochastic model is established to cope with the indoor challenging scenarios.To deal with the impact of UWB non-line-of-sight(NLOS)signals and noise uncertainty,the conventional neural net-works(CNNs)are introduced into the stochastic modelling to improve the resilience and reliability of the integration.Based on the status that the UWB features are limited,a‘two-phase'CNNs structure was designed and implemented:one for signal classification and the other one for measurement noise prediction.The proposed resilient FGO method is tested on flighting UAV platform under actual indoor challenging scenario.Compared to classical FGO method,the overall positioning errors can be decreased from about 0.60 m to centimeter-level under signal block and reflection scenarios.The superiority of resilient FGO which effectively verified in constrained environment is pretty important for positioning accuracy and integrity for indoor navigation task.
基金Supported in part by the project of Science & Technology Department of Shanghai (05dz15004)
文摘Knowing the locations of nodes in wireless sensor networks (WSN) is essential for many applications. Nodes in a WSN can have multiple capabilities and exploiting one or more of the capabilities can help to solve the localization problem. In this paper, we assume that each node in a WSN has the capability of distance measurement and present a location computation technique called linear intersection for node localization. We also propose an applied localization model using linear intersection and do some concerned experiments to estimate the location computation algorithm.
文摘Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The performance of existing long-term navigation algorithm is limited by the cumulative error of inertial sensors, disturbed local magnetic field, and complex motion modes of the pedestrian. This paper develops a robust data and physical model dual-driven based trajectory estimation(DPDD-TE) framework, which can be applied for long-term navigation tasks. A Bi-directional Long Short-Term Memory(Bi-LSTM) based quasi-static magnetic field(QSMF) detection algorithm is developed for extracting useful magnetic observation for heading calibration, and another Bi-LSTM is adopted for walking speed estimation by considering hybrid human motion information under a specific time period. In addition, a data and physical model dual-driven based multi-source fusion model is proposed to integrate basic INS mechanization and multi-level constraint and observations for maintaining accuracy under long-term navigation tasks, and enhanced by the magnetic and trajectory features assisted loop detection algorithm. Real-world experiments indicate that the proposed DPDD-TE outperforms than existing algorithms, and final estimated heading and positioning accuracy indexes reaches 5° and less than 2 m under the time period of 30 min, respectively.